Metamath Proof Explorer


Theorem prmidlssidl

Description: Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Assertion prmidlssidl Could not format assertion : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 prmidlidl Could not format ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) with typecode |-
2 1 ex Could not format ( R e. Ring -> ( i e. ( PrmIdeal ` R ) -> i e. ( LIdeal ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ( i e. ( PrmIdeal ` R ) -> i e. ( LIdeal ` R ) ) ) with typecode |-
3 2 ssrdv Could not format ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) : No typesetting found for |- ( R e. Ring -> ( PrmIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-