Description: Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | prmidlssidl | ⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmidlidl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) | |
2 | 1 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ) |
3 | 2 | ssrdv | ⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |