Metamath Proof Explorer


Theorem prmidlssidl

Description: Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Assertion prmidlssidl ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 prmidlidl ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) )
2 1 ex ( 𝑅 ∈ Ring → ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) )
3 2 ssrdv ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) )