Description: Prime ideals as a subset of ideals. (Contributed by Thierry Arnoux, 2-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmidlssidl | ⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmidlidl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) | |
| 2 | 1 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ) |
| 3 | 2 | ssrdv | ⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) ⊆ ( LIdeal ‘ 𝑅 ) ) |