Metamath Proof Explorer


Theorem lidlnsg

Description: An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024)

Ref Expression
Assertion lidlnsg ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
2 1 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
3 ringabl ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )
4 3 adantr ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Abel )
5 ablnsg ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) )
6 4 5 syl ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) )
7 2 6 eleqtrrd ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )