Description: An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | lidlnsg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
2 | 1 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
3 | ringabl | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) | |
4 | 3 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
5 | ablnsg | ⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) | |
6 | 4 5 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
7 | 2 6 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |