Metamath Proof Explorer


Theorem ablnsg

Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Assertion ablnsg ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
2 eqid ( +g𝐺 ) = ( +g𝐺 )
3 1 2 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g𝐺 ) 𝑧 ) = ( 𝑧 ( +g𝐺 ) 𝑦 ) )
4 3 3expb ( ( 𝐺 ∈ Abel ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g𝐺 ) 𝑧 ) = ( 𝑧 ( +g𝐺 ) 𝑦 ) )
5 4 eleq1d ( ( 𝐺 ∈ Abel ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑥 ) )
6 5 ralrimivva ( 𝐺 ∈ Abel → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑥 ) )
7 1 2 isnsg ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑥 ) ) )
8 7 rbaib ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑥 ) → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) )
9 6 8 syl ( 𝐺 ∈ Abel → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) )
10 9 eqrdv ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) )