| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 3 |
1 2
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 4 |
3
|
3expb |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) ) |
| 6 |
5
|
ralrimivva |
⊢ ( 𝐺 ∈ Abel → ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) ) |
| 7 |
1 2
|
isnsg |
⊢ ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 8 |
7
|
rbaib |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑥 ) → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝐺 ∈ Abel → ( 𝑥 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 10 |
9
|
eqrdv |
⊢ ( 𝐺 ∈ Abel → ( NrmSGrp ‘ 𝐺 ) = ( SubGrp ‘ 𝐺 ) ) |