| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odadd1.1 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 2 |
|
odadd1.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
odadd1.3 |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 5 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 6 |
4 5
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 7 |
2 1
|
odcl |
⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 9 |
8
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 10 |
2 1
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 12 |
11
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 13 |
2 1
|
odcl |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 16 |
12 15
|
gcdcld |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 17 |
16
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 18 |
9 17
|
zmulcld |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 20 |
|
dvds0 |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ 0 ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ 0 ) |
| 22 |
|
gcdeq0 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) ) ) |
| 23 |
12 15 22
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) ) ) |
| 24 |
23
|
biimpa |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) ) |
| 25 |
|
oveq12 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = ( 0 · 0 ) ) |
| 26 |
|
0cn |
⊢ 0 ∈ ℂ |
| 27 |
26
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
| 28 |
25 27
|
eqtrdi |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = 0 ) |
| 29 |
24 28
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = 0 ) |
| 30 |
21 29
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 31 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Abel ) |
| 32 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 33 |
12
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 34 |
15
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 35 |
|
gcddvds |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) |
| 37 |
36
|
simpld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 38 |
32 33 34 37
|
dvdsmultr1d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) |
| 40 |
33 34
|
zmulcld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 41 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 42 |
32 39 40 41
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 43 |
38 42
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 44 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐴 ∈ 𝑋 ) |
| 45 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐵 ∈ 𝑋 ) |
| 46 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 47 |
2 46 3
|
mulgdi |
⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 48 |
31 43 44 45 47
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 49 |
36
|
simprd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) |
| 50 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 51 |
32 39 34 50
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 52 |
49 51
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 53 |
|
dvdsmul1 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 54 |
33 52 53
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 55 |
33
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 56 |
34
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℂ ) |
| 57 |
32
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℂ ) |
| 58 |
55 56 57 39
|
divassd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 59 |
54 58
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 60 |
31 4
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Grp ) |
| 61 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 62 |
2 1 46 61
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 63 |
60 44 43 62
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 64 |
59 63
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 65 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 66 |
32 39 33 65
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 67 |
37 66
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 68 |
|
dvdsmul1 |
⊢ ( ( ( 𝑂 ‘ 𝐵 ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 69 |
34 67 68
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 70 |
55 56
|
mulcomd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = ( ( 𝑂 ‘ 𝐵 ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( ( 𝑂 ‘ 𝐵 ) · ( 𝑂 ‘ 𝐴 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 72 |
56 55 57 39
|
divassd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) · ( 𝑂 ‘ 𝐴 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 73 |
71 72
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 74 |
69 73
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 75 |
2 1 46 61
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 76 |
60 45 43 75
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 77 |
74 76
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) |
| 78 |
64 77
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
| 79 |
2 61
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 80 |
2 3 61
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 81 |
60 79 80
|
syl2anc2 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 82 |
48 78 81
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) |
| 83 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 84 |
2 1 46 61
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 85 |
60 83 43 84
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 86 |
82 85
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 87 |
9
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 88 |
|
dvdsmulcr |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 89 |
87 43 32 39 88
|
syl112anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 90 |
86 89
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 91 |
40
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℂ ) |
| 92 |
91 57 39
|
divcan1d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 93 |
90 92
|
breqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 94 |
30 93
|
pm2.61dane |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |