| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgdi.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgdi.m |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgdi.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
| 7 |
|
simplr2 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 8 |
|
simplr3 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
| 9 |
1 2 3
|
mulgnn0di |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 10 |
5 6 7 8 9
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 11 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
| 13 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 15 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
| 17 |
1 2 3
|
mulgnn0di |
⊢ ( ( 𝐺 ∈ CMnd ∧ ( - 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) ) |
| 18 |
11 12 14 16 17
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) ) |
| 19 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 21 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) |
| 22 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 23 |
20 13 15 22
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 24 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 25 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
| 26 |
20 21 23 25
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
| 28 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
| 29 |
20 21 13 28
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
| 30 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( - 𝑀 · 𝑌 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
| 31 |
20 21 15 30
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · 𝑌 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
| 32 |
29 31
|
oveq12d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 34 |
18 27 33
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 35 |
|
simpl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) |
| 36 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 37 |
20 21 13 36
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 38 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
| 39 |
20 21 15 38
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
| 40 |
1 3 24
|
ablinvadd |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 41 |
35 37 39 40
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 43 |
34 42
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) |
| 44 |
43
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) ) |
| 45 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
| 46 |
20 21 23 45
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
| 48 |
1 24
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) |
| 49 |
20 47 48
|
syl2an2r |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) |
| 50 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
| 51 |
20 37 39 50
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
| 53 |
1 24
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 54 |
20 52 53
|
syl2an2r |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 55 |
44 49 54
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 56 |
|
elznn0 |
⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℝ ∧ ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) ) |
| 57 |
56
|
simprbi |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) |
| 58 |
21 57
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) |
| 59 |
10 55 58
|
mpjaodan |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |