| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odadd1.1 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 2 |
|
odadd1.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
odadd1.3 |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
2 1
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 |
5
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 7 |
2 1
|
odcl |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 9 |
8
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 10 |
6 9
|
zmulcld |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 12 |
|
dvds0 |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ 0 ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ 0 ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) |
| 15 |
14
|
sq0id |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) = 0 ) |
| 16 |
15
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 0 ) ) |
| 17 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 18 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 19 |
17 18
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 20 |
2 1
|
odcl |
⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 22 |
21
|
nn0zd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 24 |
23
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ ) |
| 25 |
24
|
mul01d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 0 ) = 0 ) |
| 26 |
16 25
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = 0 ) |
| 27 |
13 26
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 28 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 29 |
9
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 30 |
28 29
|
gcdcld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 31 |
30
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℂ ) |
| 32 |
31
|
sqvald |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 34 |
|
gcddvds |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) |
| 35 |
28 29 34
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) |
| 36 |
35
|
simpld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 37 |
30
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 38 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) |
| 39 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 40 |
37 38 28 39
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 41 |
36 40
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 42 |
41
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 43 |
35
|
simprd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) |
| 44 |
|
dvdsval2 |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 45 |
37 38 29 44
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 46 |
43 45
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 47 |
46
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 48 |
42 31 47 31
|
mul4d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 49 |
28
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 50 |
49 31 38
|
divcan1d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 51 |
29
|
zcnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℂ ) |
| 52 |
51 31 38
|
divcan1d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 𝑂 ‘ 𝐵 ) ) |
| 53 |
50 52
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 54 |
33 48 53
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 55 |
22
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 56 |
|
dvdsmul2 |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 57 |
55 28 56
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 58 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Abel ) |
| 59 |
55 29
|
zmulcld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 60 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐴 ∈ 𝑋 ) |
| 61 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐵 ∈ 𝑋 ) |
| 62 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 63 |
2 62 3
|
mulgdi |
⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 64 |
58 59 60 61 63
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 65 |
|
dvdsmul2 |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 66 |
55 29 65
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 67 |
58 17
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Grp ) |
| 68 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 69 |
2 1 62 68
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 70 |
67 61 59 69
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 71 |
66 70
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) ) |
| 73 |
64 72
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) ) |
| 74 |
|
dvdsmul1 |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 75 |
55 29 74
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 76 |
19
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 77 |
2 1 62 68
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 78 |
67 76 59 77
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 79 |
75 78
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) |
| 80 |
2 62
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) |
| 81 |
67 59 60 80
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) |
| 82 |
2 3 68
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) |
| 83 |
67 81 82
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) |
| 84 |
73 79 83
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 85 |
2 1 62 68
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 86 |
67 60 59 85
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 87 |
84 86
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 88 |
55 28
|
zmulcld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) |
| 89 |
|
dvdsgcd |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 90 |
28 88 59 89
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 91 |
57 87 90
|
mp2and |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 92 |
21
|
adantr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 93 |
|
mulgcd |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 94 |
92 28 29 93
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 95 |
91 94
|
breqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 96 |
50 95
|
eqbrtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 97 |
|
dvdsmulcr |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 98 |
41 55 37 38 97
|
syl112anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 99 |
96 98
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 100 |
2 62 3
|
mulgdi |
⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 101 |
58 88 60 61 100
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 102 |
2 1 62 68
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 103 |
67 60 88 102
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 104 |
57 103
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 105 |
104
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 106 |
101 105
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 107 |
|
dvdsmul1 |
⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 108 |
55 28 107
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 109 |
2 1 62 68
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 110 |
67 76 88 109
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 111 |
108 110
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) |
| 112 |
2 62
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ∈ 𝑋 ) |
| 113 |
67 88 61 112
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ∈ 𝑋 ) |
| 114 |
2 3 68
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) |
| 115 |
67 113 114
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) |
| 116 |
106 111 115
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) |
| 117 |
2 1 62 68
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 118 |
67 61 88 117
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 119 |
116 118
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 120 |
|
dvdsgcd |
⊢ ( ( ( 𝑂 ‘ 𝐵 ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 121 |
29 88 59 120
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 122 |
119 66 121
|
mp2and |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 123 |
122 94
|
breqtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 124 |
52 123
|
eqbrtrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 125 |
|
dvdsmulcr |
⊢ ( ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 126 |
46 55 37 38 125
|
syl112anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 127 |
124 126
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 128 |
41 46
|
gcdcld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℕ0 ) |
| 129 |
128
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℂ ) |
| 130 |
|
1cnd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 1 ∈ ℂ ) |
| 131 |
31
|
mullidd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 1 · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) |
| 132 |
50 52
|
oveq12d |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) |
| 133 |
|
mulgcdr |
⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 134 |
41 46 30 133
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 135 |
131 132 134
|
3eqtr2rd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 1 · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 136 |
129 130 31 38 135
|
mulcan2ad |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = 1 ) |
| 137 |
|
coprmdvds2 |
⊢ ( ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) ∧ ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = 1 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 138 |
41 46 55 136 137
|
syl31anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 139 |
99 127 138
|
mp2and |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 140 |
41 46
|
zmulcld |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℤ ) |
| 141 |
|
zsqcl |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℤ ) |
| 142 |
37 141
|
syl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℤ ) |
| 143 |
|
dvdsmulc |
⊢ ( ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℤ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) |
| 144 |
140 55 142 143
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) |
| 145 |
139 144
|
mpd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 146 |
54 145
|
eqbrtrrd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 147 |
27 146
|
pm2.61dane |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |