| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odadd1.1 |
|- O = ( od ` G ) |
| 2 |
|
odadd1.2 |
|- X = ( Base ` G ) |
| 3 |
|
odadd1.3 |
|- .+ = ( +g ` G ) |
| 4 |
2 1
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. NN0 ) |
| 6 |
5
|
nn0zd |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. ZZ ) |
| 7 |
2 1
|
odcl |
|- ( B e. X -> ( O ` B ) e. NN0 ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. NN0 ) |
| 9 |
8
|
nn0zd |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. ZZ ) |
| 10 |
6 9
|
zmulcld |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) |
| 11 |
10
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) |
| 12 |
|
dvds0 |
|- ( ( ( O ` A ) x. ( O ` B ) ) e. ZZ -> ( ( O ` A ) x. ( O ` B ) ) || 0 ) |
| 13 |
11 12
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) || 0 ) |
| 14 |
|
simpr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) = 0 ) |
| 15 |
14
|
sq0id |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = 0 ) |
| 16 |
15
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` ( A .+ B ) ) x. 0 ) ) |
| 17 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 18 |
2 3
|
grpcl |
|- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 19 |
17 18
|
syl3an1 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 20 |
2 1
|
odcl |
|- ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 21 |
19 20
|
syl |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 22 |
21
|
nn0zd |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. ZZ ) |
| 23 |
22
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( O ` ( A .+ B ) ) e. ZZ ) |
| 24 |
23
|
zcnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( O ` ( A .+ B ) ) e. CC ) |
| 25 |
24
|
mul01d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. 0 ) = 0 ) |
| 26 |
16 25
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = 0 ) |
| 27 |
13 26
|
breqtrrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 28 |
6
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. ZZ ) |
| 29 |
9
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. ZZ ) |
| 30 |
28 29
|
gcdcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. NN0 ) |
| 31 |
30
|
nn0cnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. CC ) |
| 32 |
31
|
sqvald |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = ( ( ( O ` A ) gcd ( O ` B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 33 |
32
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 34 |
|
gcddvds |
|- ( ( ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) |
| 35 |
28 29 34
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) |
| 36 |
35
|
simpld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) ) |
| 37 |
30
|
nn0zd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. ZZ ) |
| 38 |
|
simpr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) |
| 39 |
|
dvdsval2 |
|- ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` A ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 40 |
37 38 28 39
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 41 |
36 40
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 42 |
41
|
zcnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. CC ) |
| 43 |
35
|
simprd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) |
| 44 |
|
dvdsval2 |
|- ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 45 |
37 38 29 44
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 46 |
43 45
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 47 |
46
|
zcnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. CC ) |
| 48 |
42 31 47 31
|
mul4d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 49 |
28
|
zcnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. CC ) |
| 50 |
49 31 38
|
divcan1d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` A ) ) |
| 51 |
29
|
zcnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. CC ) |
| 52 |
51 31 38
|
divcan1d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` B ) ) |
| 53 |
50 52
|
oveq12d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
| 54 |
33 48 53
|
3eqtr2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
| 55 |
22
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) e. ZZ ) |
| 56 |
|
dvdsmul2 |
|- ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` A ) e. ZZ ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) |
| 57 |
55 28 56
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) |
| 58 |
|
simpl1 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Abel ) |
| 59 |
55 29
|
zmulcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) |
| 60 |
|
simpl2 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> A e. X ) |
| 61 |
|
simpl3 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> B e. X ) |
| 62 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 63 |
2 62 3
|
mulgdi |
|- ( ( G e. Abel /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ /\ A e. X /\ B e. X ) ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) ) ) |
| 64 |
58 59 60 61 63
|
syl13anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) ) ) |
| 65 |
|
dvdsmul2 |
|- ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) |
| 66 |
55 29 65
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) |
| 67 |
58 17
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Grp ) |
| 68 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 69 |
2 1 62 68
|
oddvds |
|- ( ( G e. Grp /\ B e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) |
| 70 |
67 61 59 69
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) |
| 71 |
66 70
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) = ( 0g ` G ) ) |
| 72 |
71
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) ) |
| 73 |
64 72
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) ) |
| 74 |
|
dvdsmul1 |
|- ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) |
| 75 |
55 29 74
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) |
| 76 |
19
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( A .+ B ) e. X ) |
| 77 |
2 1 62 68
|
oddvds |
|- ( ( G e. Grp /\ ( A .+ B ) e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) |
| 78 |
67 76 59 77
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) |
| 79 |
75 78
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) |
| 80 |
2 62
|
mulgcl |
|- ( ( G e. Grp /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ /\ A e. X ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) e. X ) |
| 81 |
67 59 60 80
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) e. X ) |
| 82 |
2 3 68
|
grprid |
|- ( ( G e. Grp /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) e. X ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) ) |
| 83 |
67 81 82
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) .+ ( 0g ` G ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) ) |
| 84 |
73 79 83
|
3eqtr3rd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) = ( 0g ` G ) ) |
| 85 |
2 1 62 68
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 86 |
67 60 59 85
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 87 |
84 86
|
mpbird |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) |
| 88 |
55 28
|
zmulcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) |
| 89 |
|
dvdsgcd |
|- ( ( ( O ` A ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` A ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) |
| 90 |
28 88 59 89
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` A ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) |
| 91 |
57 87 90
|
mp2and |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) |
| 92 |
21
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 93 |
|
mulgcd |
|- ( ( ( O ` ( A .+ B ) ) e. NN0 /\ ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 94 |
92 28 29 93
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 95 |
91 94
|
breqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 96 |
50 95
|
eqbrtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 97 |
|
dvdsmulcr |
|- ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) |
| 98 |
41 55 37 38 97
|
syl112anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) |
| 99 |
96 98
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) |
| 100 |
2 62 3
|
mulgdi |
|- ( ( G e. Abel /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ A e. X /\ B e. X ) ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) |
| 101 |
58 88 60 61 100
|
syl13anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) |
| 102 |
2 1 62 68
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 103 |
67 60 88 102
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 104 |
57 103
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) = ( 0g ` G ) ) |
| 105 |
104
|
oveq1d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) A ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) = ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) |
| 106 |
101 105
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) ) |
| 107 |
|
dvdsmul1 |
|- ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( O ` A ) e. ZZ ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) |
| 108 |
55 28 107
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) |
| 109 |
2 1 62 68
|
oddvds |
|- ( ( G e. Grp /\ ( A .+ B ) e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) |
| 110 |
67 76 88 109
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) |
| 111 |
108 110
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) |
| 112 |
2 62
|
mulgcl |
|- ( ( G e. Grp /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ B e. X ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) e. X ) |
| 113 |
67 88 61 112
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) e. X ) |
| 114 |
2 3 68
|
grplid |
|- ( ( G e. Grp /\ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) e. X ) -> ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) |
| 115 |
67 113 114
|
syl2anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( 0g ` G ) .+ ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) = ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) ) |
| 116 |
106 111 115
|
3eqtr3rd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) = ( 0g ` G ) ) |
| 117 |
2 1 62 68
|
oddvds |
|- ( ( G e. Grp /\ B e. X /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) |
| 118 |
67 61 88 117
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) <-> ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) |
| 119 |
116 118
|
mpbird |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) ) |
| 120 |
|
dvdsgcd |
|- ( ( ( O ` B ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) e. ZZ /\ ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) e. ZZ ) -> ( ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` B ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) |
| 121 |
29 88 59 120
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) /\ ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) -> ( O ` B ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) ) |
| 122 |
119 66 121
|
mp2and |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( ( O ` ( A .+ B ) ) x. ( O ` A ) ) gcd ( ( O ` ( A .+ B ) ) x. ( O ` B ) ) ) ) |
| 123 |
122 94
|
breqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 124 |
52 123
|
eqbrtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 125 |
|
dvdsmulcr |
|- ( ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) ) -> ( ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) |
| 126 |
46 55 37 38 125
|
syl112anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) ) |
| 127 |
124 126
|
mpbid |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) |
| 128 |
41 46
|
gcdcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. NN0 ) |
| 129 |
128
|
nn0cnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. CC ) |
| 130 |
|
1cnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> 1 e. CC ) |
| 131 |
31
|
mullidd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( 1 x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` A ) gcd ( O ` B ) ) ) |
| 132 |
50 52
|
oveq12d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( O ` A ) gcd ( O ` B ) ) ) |
| 133 |
|
mulgcdr |
|- ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) e. NN0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 134 |
41 46 30 133
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) = ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 135 |
131 132 134
|
3eqtr2rd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( 1 x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 136 |
129 130 31 38 135
|
mulcan2ad |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) = 1 ) |
| 137 |
|
coprmdvds2 |
|- ( ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ ) /\ ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) gcd ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) = 1 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) ) ) |
| 138 |
41 46 55 136 137
|
syl31anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) || ( O ` ( A .+ B ) ) ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) ) ) |
| 139 |
99 127 138
|
mp2and |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) ) |
| 140 |
41 46
|
zmulcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. ZZ ) |
| 141 |
|
zsqcl |
|- ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) e. ZZ ) |
| 142 |
37 141
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) e. ZZ ) |
| 143 |
|
dvdsmulc |
|- ( ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) e. ZZ /\ ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) e. ZZ ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) ) |
| 144 |
140 55 142 143
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) || ( O ` ( A .+ B ) ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) ) |
| 145 |
139 144
|
mpd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 146 |
54 145
|
eqbrtrrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 147 |
27 146
|
pm2.61dane |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |