| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odadd1.1 |
|- O = ( od ` G ) |
| 2 |
|
odadd1.2 |
|- X = ( Base ` G ) |
| 3 |
|
odadd1.3 |
|- .+ = ( +g ` G ) |
| 4 |
|
simpl1 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Abel ) |
| 5 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 6 |
4 5
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Grp ) |
| 7 |
|
simpl2 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> A e. X ) |
| 8 |
|
simpl3 |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> B e. X ) |
| 9 |
2 3
|
grpcl |
|- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( A .+ B ) e. X ) |
| 11 |
2 1
|
odcl |
|- ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 12 |
10 11
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 13 |
2 1
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
| 14 |
7 13
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` A ) e. NN0 ) |
| 15 |
2 1
|
odcl |
|- ( B e. X -> ( O ` B ) e. NN0 ) |
| 16 |
8 15
|
syl |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` B ) e. NN0 ) |
| 17 |
14 16
|
nn0mulcld |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) |
| 18 |
|
simpr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) gcd ( O ` B ) ) = 1 ) |
| 19 |
18
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) |
| 20 |
12
|
nn0cnd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. CC ) |
| 21 |
20
|
mulridd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. 1 ) = ( O ` ( A .+ B ) ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` ( A .+ B ) ) ) |
| 23 |
1 2 3
|
odadd1 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 25 |
22 24
|
eqbrtrrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 26 |
1 2 3
|
odadd2 |
|- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 28 |
18
|
oveq1d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 29 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 30 |
28 29
|
eqtrdi |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = 1 ) |
| 31 |
30
|
oveq2d |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) |
| 32 |
31 21
|
eqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( O ` ( A .+ B ) ) ) |
| 33 |
27 32
|
breqtrd |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) |
| 34 |
|
dvdseq |
|- ( ( ( ( O ` ( A .+ B ) ) e. NN0 /\ ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) /\ ( ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) /\ ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
| 35 |
12 17 25 33 34
|
syl22anc |
|- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |