Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
3 |
1 2
|
isprmidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑃 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
4 |
3
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) → ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑃 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) |
5 |
4
|
simp1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ) |