Step |
Hyp |
Ref |
Expression |
1 |
|
prmidlval.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
prmidlval.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
1 2
|
prmidlval |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |
4 |
3
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ 𝑃 ∈ { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) ) |
5 |
|
neeq1 |
⊢ ( 𝑖 = 𝑃 → ( 𝑖 ≠ 𝐵 ↔ 𝑃 ≠ 𝐵 ) ) |
6 |
|
eleq2 |
⊢ ( 𝑖 = 𝑃 → ( ( 𝑥 · 𝑦 ) ∈ 𝑖 ↔ ( 𝑥 · 𝑦 ) ∈ 𝑃 ) ) |
7 |
6
|
2ralbidv |
⊢ ( 𝑖 = 𝑃 → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 ↔ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 ) ) |
8 |
|
sseq2 |
⊢ ( 𝑖 = 𝑃 → ( 𝑎 ⊆ 𝑖 ↔ 𝑎 ⊆ 𝑃 ) ) |
9 |
|
sseq2 |
⊢ ( 𝑖 = 𝑃 → ( 𝑏 ⊆ 𝑖 ↔ 𝑏 ⊆ 𝑃 ) ) |
10 |
8 9
|
orbi12d |
⊢ ( 𝑖 = 𝑃 → ( ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ↔ ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) |
11 |
7 10
|
imbi12d |
⊢ ( 𝑖 = 𝑃 → ( ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) |
12 |
11
|
2ralbidv |
⊢ ( 𝑖 = 𝑃 → ( ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) |
13 |
5 12
|
anbi12d |
⊢ ( 𝑖 = 𝑃 → ( ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ↔ ( 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
14 |
13
|
elrab |
⊢ ( 𝑃 ∈ { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ↔ ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
15 |
4 14
|
bitrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ↔ ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |
17 |
15 16
|
bitr4di |
⊢ ( 𝑅 ∈ Ring → ( 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑃 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑃 → ( 𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃 ) ) ) ) ) |