Step |
Hyp |
Ref |
Expression |
1 |
|
prmidlval.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
prmidlval.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
df-prmidl |
⊢ PrmIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
7 |
6
|
neeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ≠ ( Base ‘ 𝑟 ) ↔ 𝑖 ≠ 𝐵 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
10 |
9
|
oveqd |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ↔ ( 𝑥 · 𝑦 ) ∈ 𝑖 ) ) |
12 |
11
|
2ralbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ↔ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑟 = 𝑅 → ( ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ) |
14 |
4 13
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ) |
15 |
4 14
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ↔ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ) |
16 |
7 15
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ↔ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) ) ) |
17 |
4 16
|
rabeqbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |
18 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
19 |
|
eqid |
⊢ { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } |
20 |
|
fvexd |
⊢ ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) ∈ V ) |
21 |
19 20
|
rabexd |
⊢ ( 𝑅 ∈ Ring → { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ∈ V ) |
22 |
3 17 18 21
|
fvmptd3 |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |