Metamath Proof Explorer


Theorem prmidlval

Description: The class of prime ideals of a ring R . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses prmidlval.1 𝐵 = ( Base ‘ 𝑅 )
prmidlval.2 · = ( .r𝑅 )
Assertion prmidlval ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )

Proof

Step Hyp Ref Expression
1 prmidlval.1 𝐵 = ( Base ‘ 𝑅 )
2 prmidlval.2 · = ( .r𝑅 )
3 df-prmidl PrmIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )
4 fveq2 ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) )
5 fveq2 ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
6 5 1 eqtr4di ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 )
7 6 neeq2d ( 𝑟 = 𝑅 → ( 𝑖 ≠ ( Base ‘ 𝑟 ) ↔ 𝑖𝐵 ) )
8 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
9 8 2 eqtr4di ( 𝑟 = 𝑅 → ( .r𝑟 ) = · )
10 9 oveqd ( 𝑟 = 𝑅 → ( 𝑥 ( .r𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) )
11 10 eleq1d ( 𝑟 = 𝑅 → ( ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 ↔ ( 𝑥 · 𝑦 ) ∈ 𝑖 ) )
12 11 2ralbidv ( 𝑟 = 𝑅 → ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 ↔ ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 ) )
13 12 imbi1d ( 𝑟 = 𝑅 → ( ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ↔ ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) )
14 4 13 raleqbidv ( 𝑟 = 𝑅 → ( ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ↔ ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) )
15 4 14 raleqbidv ( 𝑟 = 𝑅 → ( ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ↔ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) )
16 7 15 anbi12d ( 𝑟 = 𝑅 → ( ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) ↔ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) ) )
17 4 16 rabeqbidv ( 𝑟 = 𝑅 → { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )
18 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
19 eqid { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) }
20 fvexd ( 𝑅 ∈ Ring → ( LIdeal ‘ 𝑅 ) ∈ V )
21 19 20 rabexd ( 𝑅 ∈ Ring → { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } ∈ V )
22 3 17 18 21 fvmptd3 ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖𝐵 ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 · 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )