Metamath Proof Explorer


Theorem prmidlval

Description: The class of prime ideals of a ring R . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses prmidlval.1 B = Base R
prmidlval.2 · ˙ = R
Assertion prmidlval R Ring PrmIdeal R = i LIdeal R | i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i

Proof

Step Hyp Ref Expression
1 prmidlval.1 B = Base R
2 prmidlval.2 · ˙ = R
3 df-prmidl PrmIdeal = r Ring i LIdeal r | i Base r a LIdeal r b LIdeal r x a y b x r y i a i b i
4 fveq2 r = R LIdeal r = LIdeal R
5 fveq2 r = R Base r = Base R
6 5 1 eqtr4di r = R Base r = B
7 6 neeq2d r = R i Base r i B
8 fveq2 r = R r = R
9 8 2 eqtr4di r = R r = · ˙
10 9 oveqd r = R x r y = x · ˙ y
11 10 eleq1d r = R x r y i x · ˙ y i
12 11 2ralbidv r = R x a y b x r y i x a y b x · ˙ y i
13 12 imbi1d r = R x a y b x r y i a i b i x a y b x · ˙ y i a i b i
14 4 13 raleqbidv r = R b LIdeal r x a y b x r y i a i b i b LIdeal R x a y b x · ˙ y i a i b i
15 4 14 raleqbidv r = R a LIdeal r b LIdeal r x a y b x r y i a i b i a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i
16 7 15 anbi12d r = R i Base r a LIdeal r b LIdeal r x a y b x r y i a i b i i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i
17 4 16 rabeqbidv r = R i LIdeal r | i Base r a LIdeal r b LIdeal r x a y b x r y i a i b i = i LIdeal R | i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i
18 id R Ring R Ring
19 eqid i LIdeal R | i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i = i LIdeal R | i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i
20 fvexd R Ring LIdeal R V
21 19 20 rabexd R Ring i LIdeal R | i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i V
22 3 17 18 21 fvmptd3 R Ring PrmIdeal R = i LIdeal R | i B a LIdeal R b LIdeal R x a y b x · ˙ y i a i b i