| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprmidl |
⊢ PrmIdeal |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
crg |
⊢ Ring |
| 3 |
|
vi |
⊢ 𝑖 |
| 4 |
|
clidl |
⊢ LIdeal |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( LIdeal ‘ 𝑟 ) |
| 7 |
3
|
cv |
⊢ 𝑖 |
| 8 |
|
cbs |
⊢ Base |
| 9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 10 |
7 9
|
wne |
⊢ 𝑖 ≠ ( Base ‘ 𝑟 ) |
| 11 |
|
va |
⊢ 𝑎 |
| 12 |
|
vb |
⊢ 𝑏 |
| 13 |
|
vx |
⊢ 𝑥 |
| 14 |
11
|
cv |
⊢ 𝑎 |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
12
|
cv |
⊢ 𝑏 |
| 17 |
13
|
cv |
⊢ 𝑥 |
| 18 |
|
cmulr |
⊢ .r |
| 19 |
5 18
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
| 20 |
15
|
cv |
⊢ 𝑦 |
| 21 |
17 20 19
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
| 22 |
21 7
|
wcel |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 |
| 23 |
22 15 16
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 |
| 24 |
23 13 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 |
| 25 |
14 7
|
wss |
⊢ 𝑎 ⊆ 𝑖 |
| 26 |
16 7
|
wss |
⊢ 𝑏 ⊆ 𝑖 |
| 27 |
25 26
|
wo |
⊢ ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) |
| 28 |
24 27
|
wi |
⊢ ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) |
| 29 |
28 12 6
|
wral |
⊢ ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) |
| 30 |
29 11 6
|
wral |
⊢ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) |
| 31 |
10 30
|
wa |
⊢ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) |
| 32 |
31 3 6
|
crab |
⊢ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } |
| 33 |
1 2 32
|
cmpt |
⊢ ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |
| 34 |
0 33
|
wceq |
⊢ PrmIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖 ) ) ) } ) |