Metamath Proof Explorer


Definition df-prmidl

Description: Define the class of prime ideals of a ring R . A proper ideal I of R is prime if whenever A B C_ I for ideals A and B , either A C_ I or B C_ I . The more familiar definition using elements rather than ideals is equivalent provided R is commutative; see prmidl2 and isprmidlc . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Thierry Arnoux, 14-Jan-2024)

Ref Expression
Assertion df-prmidl PrmIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprmidl PrmIdeal
1 vr 𝑟
2 crg Ring
3 vi 𝑖
4 clidl LIdeal
5 1 cv 𝑟
6 5 4 cfv ( LIdeal ‘ 𝑟 )
7 3 cv 𝑖
8 cbs Base
9 5 8 cfv ( Base ‘ 𝑟 )
10 7 9 wne 𝑖 ≠ ( Base ‘ 𝑟 )
11 va 𝑎
12 vb 𝑏
13 vx 𝑥
14 11 cv 𝑎
15 vy 𝑦
16 12 cv 𝑏
17 13 cv 𝑥
18 cmulr .r
19 5 18 cfv ( .r𝑟 )
20 15 cv 𝑦
21 17 20 19 co ( 𝑥 ( .r𝑟 ) 𝑦 )
22 21 7 wcel ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖
23 22 15 16 wral 𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖
24 23 13 14 wral 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖
25 14 7 wss 𝑎𝑖
26 16 7 wss 𝑏𝑖
27 25 26 wo ( 𝑎𝑖𝑏𝑖 )
28 24 27 wi ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) )
29 28 12 6 wral 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) )
30 29 11 6 wral 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) )
31 10 30 wa ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) )
32 31 3 6 crab { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) }
33 1 2 32 cmpt ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )
34 0 33 wceq PrmIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑎 ∈ ( LIdeal ‘ 𝑟 ) ∀ 𝑏 ∈ ( LIdeal ‘ 𝑟 ) ( ∀ 𝑥𝑎𝑦𝑏 ( 𝑥 ( .r𝑟 ) 𝑦 ) ∈ 𝑖 → ( 𝑎𝑖𝑏𝑖 ) ) ) } )