Description: A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pridln1.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| pridln1.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | pridln1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ≠ 𝐵 ) → ¬ 1 ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pridln1.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | pridln1.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 4 | 3 1 2 | lidl1el | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵 ) ) |
| 5 | 4 | necon3bbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ¬ 1 ∈ 𝐼 ↔ 𝐼 ≠ 𝐵 ) ) |
| 6 | 5 | biimp3ar | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ≠ 𝐵 ) → ¬ 1 ∈ 𝐼 ) |