Metamath Proof Explorer


Theorem pridln1

Description: A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024)

Ref Expression
Hypotheses pridln1.1
|- B = ( Base ` R )
pridln1.2
|- .1. = ( 1r ` R )
Assertion pridln1
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> -. .1. e. I )

Proof

Step Hyp Ref Expression
1 pridln1.1
 |-  B = ( Base ` R )
2 pridln1.2
 |-  .1. = ( 1r ` R )
3 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
4 3 1 2 lidl1el
 |-  ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> ( .1. e. I <-> I = B ) )
5 4 necon3bbid
 |-  ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> ( -. .1. e. I <-> I =/= B ) )
6 5 biimp3ar
 |-  ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> -. .1. e. I )