Description: A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pridln1.1 | |- B = ( Base ` R ) |
|
pridln1.2 | |- .1. = ( 1r ` R ) |
||
Assertion | pridln1 | |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> -. .1. e. I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pridln1.1 | |- B = ( Base ` R ) |
|
2 | pridln1.2 | |- .1. = ( 1r ` R ) |
|
3 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
4 | 3 1 2 | lidl1el | |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> ( .1. e. I <-> I = B ) ) |
5 | 4 | necon3bbid | |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> ( -. .1. e. I <-> I =/= B ) ) |
6 | 5 | biimp3ar | |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> -. .1. e. I ) |