| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlmulssprm.1 |
⊢ × = ( LSSum ‘ ( mulGrp ‘ 𝑅 ) ) |
| 2 |
|
idlmulssprm.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
idlmulssprm.3 |
⊢ ( 𝜑 → 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 4 |
|
idlmulssprm.4 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 |
|
idlmulssprm.5 |
⊢ ( 𝜑 → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 6 |
|
idlmulssprm.6 |
⊢ ( 𝜑 → ( 𝐼 × 𝐽 ) ⊆ 𝑃 ) |
| 7 |
4 5
|
jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ) |
| 8 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐼 × 𝐽 ) ⊆ 𝑃 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 13 |
9 12
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 16 |
9 12
|
lidlss |
⊢ ( 𝐽 ∈ ( LIdeal ‘ 𝑅 ) → 𝐽 ⊆ ( Base ‘ 𝑅 ) ) |
| 17 |
5 16
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ ( Base ‘ 𝑅 ) ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝐽 ⊆ ( Base ‘ 𝑅 ) ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ∈ 𝐽 ) |
| 21 |
9 10 11 1 15 18 19 20
|
elringlsmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( 𝐼 × 𝐽 ) ) |
| 22 |
8 21
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑃 ) |
| 23 |
22
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑃 ) |
| 24 |
23
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑃 ) |
| 25 |
9 10
|
prmidl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑃 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ) ∧ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑃 ) → ( 𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃 ) ) |
| 26 |
2 3 7 24 25
|
syl1111anc |
⊢ ( 𝜑 → ( 𝐼 ⊆ 𝑃 ∨ 𝐽 ⊆ 𝑃 ) ) |