| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmidlval.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | prmidlval.2 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | raleq | ⊢ ( 𝑏  =  𝐽  →  ( ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  ↔  ∀ 𝑦  ∈  𝐽 ( 𝑥  ·  𝑦 )  ∈  𝑃 ) ) | 
						
							| 4 | 3 | ralbidv | ⊢ ( 𝑏  =  𝐽  →  ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  ↔  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐽 ( 𝑥  ·  𝑦 )  ∈  𝑃 ) ) | 
						
							| 5 |  | sseq1 | ⊢ ( 𝑏  =  𝐽  →  ( 𝑏  ⊆  𝑃  ↔  𝐽  ⊆  𝑃 ) ) | 
						
							| 6 | 5 | orbi2d | ⊢ ( 𝑏  =  𝐽  →  ( ( 𝐼  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 )  ↔  ( 𝐼  ⊆  𝑃  ∨  𝐽  ⊆  𝑃 ) ) ) | 
						
							| 7 | 4 6 | imbi12d | ⊢ ( 𝑏  =  𝐽  →  ( ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝐼  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) )  ↔  ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐽 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝐼  ⊆  𝑃  ∨  𝐽  ⊆  𝑃 ) ) ) ) | 
						
							| 8 |  | raleq | ⊢ ( 𝑎  =  𝐼  →  ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  ↔  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃 ) ) | 
						
							| 9 |  | sseq1 | ⊢ ( 𝑎  =  𝐼  →  ( 𝑎  ⊆  𝑃  ↔  𝐼  ⊆  𝑃 ) ) | 
						
							| 10 | 9 | orbi1d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 )  ↔  ( 𝐼  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) | 
						
							| 11 | 8 10 | imbi12d | ⊢ ( 𝑎  =  𝐼  →  ( ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) )  ↔  ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝐼  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑎  =  𝐼  →  ( ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) )  ↔  ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝐼  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) | 
						
							| 13 | 1 2 | isprmidl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑃  ∈  ( PrmIdeal ‘ 𝑅 )  ↔  ( 𝑃  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑃  ≠  𝐵  ∧  ∀ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) ) | 
						
							| 14 | 13 | biimpa | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ( 𝑃  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑃  ≠  𝐵  ∧  ∀ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) | 
						
							| 15 | 14 | simp3d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  →  ∀ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  ∀ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 18 | 12 16 17 | rspcdva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  ∀ 𝑏  ∈  ( LIdeal ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝑏 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝐼  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 20 | 7 18 19 | rspcdva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) )  →  ( ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐽 ( 𝑥  ·  𝑦 )  ∈  𝑃  →  ( 𝐼  ⊆  𝑃  ∨  𝐽  ⊆  𝑃 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑃  ∈  ( PrmIdeal ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐽  ∈  ( LIdeal ‘ 𝑅 ) ) )  ∧  ∀ 𝑥  ∈  𝐼 ∀ 𝑦  ∈  𝐽 ( 𝑥  ·  𝑦 )  ∈  𝑃 )  →  ( 𝐼  ⊆  𝑃  ∨  𝐽  ⊆  𝑃 ) ) |