Step |
Hyp |
Ref |
Expression |
1 |
|
elringlsm.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
elringlsm.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
elringlsm.3 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
4 |
|
elringlsm.4 |
⊢ × = ( LSSum ‘ 𝐺 ) |
5 |
|
elringlsm.6 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
6 |
|
elringlsm.7 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
7 |
|
elringlsmd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
8 |
|
elringlsmd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐹 ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
10 |
|
rspceov |
⊢ ( ( 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐹 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) → ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐹 ( 𝑋 · 𝑌 ) = ( 𝑥 · 𝑦 ) ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐹 ( 𝑋 · 𝑌 ) = ( 𝑥 · 𝑦 ) ) |
12 |
1 2 3 4 5 6
|
elringlsm |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ∈ ( 𝐸 × 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐹 ( 𝑋 · 𝑌 ) = ( 𝑥 · 𝑦 ) ) ) |
13 |
11 12
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ ( 𝐸 × 𝐹 ) ) |