Metamath Proof Explorer


Theorem elringlsmd

Description: Membership in a product of two subsets of a ring, one direction. (Contributed by Thierry Arnoux, 13-Apr-2024)

Ref Expression
Hypotheses elringlsm.1 𝐵 = ( Base ‘ 𝑅 )
elringlsm.2 · = ( .r𝑅 )
elringlsm.3 𝐺 = ( mulGrp ‘ 𝑅 )
elringlsm.4 × = ( LSSum ‘ 𝐺 )
elringlsm.6 ( 𝜑𝐸𝐵 )
elringlsm.7 ( 𝜑𝐹𝐵 )
elringlsmd.1 ( 𝜑𝑋𝐸 )
elringlsmd.2 ( 𝜑𝑌𝐹 )
Assertion elringlsmd ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ ( 𝐸 × 𝐹 ) )

Proof

Step Hyp Ref Expression
1 elringlsm.1 𝐵 = ( Base ‘ 𝑅 )
2 elringlsm.2 · = ( .r𝑅 )
3 elringlsm.3 𝐺 = ( mulGrp ‘ 𝑅 )
4 elringlsm.4 × = ( LSSum ‘ 𝐺 )
5 elringlsm.6 ( 𝜑𝐸𝐵 )
6 elringlsm.7 ( 𝜑𝐹𝐵 )
7 elringlsmd.1 ( 𝜑𝑋𝐸 )
8 elringlsmd.2 ( 𝜑𝑌𝐹 )
9 eqidd ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) )
10 rspceov ( ( 𝑋𝐸𝑌𝐹 ∧ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) → ∃ 𝑥𝐸𝑦𝐹 ( 𝑋 · 𝑌 ) = ( 𝑥 · 𝑦 ) )
11 7 8 9 10 syl3anc ( 𝜑 → ∃ 𝑥𝐸𝑦𝐹 ( 𝑋 · 𝑌 ) = ( 𝑥 · 𝑦 ) )
12 1 2 3 4 5 6 elringlsm ( 𝜑 → ( ( 𝑋 · 𝑌 ) ∈ ( 𝐸 × 𝐹 ) ↔ ∃ 𝑥𝐸𝑦𝐹 ( 𝑋 · 𝑌 ) = ( 𝑥 · 𝑦 ) ) )
13 11 12 mpbird ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ ( 𝐸 × 𝐹 ) )