| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elringlsm.1 |
|- B = ( Base ` R ) |
| 2 |
|
elringlsm.2 |
|- .x. = ( .r ` R ) |
| 3 |
|
elringlsm.3 |
|- G = ( mulGrp ` R ) |
| 4 |
|
elringlsm.4 |
|- .X. = ( LSSum ` G ) |
| 5 |
|
elringlsm.6 |
|- ( ph -> E C_ B ) |
| 6 |
|
elringlsm.7 |
|- ( ph -> F C_ B ) |
| 7 |
|
elringlsmd.1 |
|- ( ph -> X e. E ) |
| 8 |
|
elringlsmd.2 |
|- ( ph -> Y e. F ) |
| 9 |
|
eqidd |
|- ( ph -> ( X .x. Y ) = ( X .x. Y ) ) |
| 10 |
|
rspceov |
|- ( ( X e. E /\ Y e. F /\ ( X .x. Y ) = ( X .x. Y ) ) -> E. x e. E E. y e. F ( X .x. Y ) = ( x .x. y ) ) |
| 11 |
7 8 9 10
|
syl3anc |
|- ( ph -> E. x e. E E. y e. F ( X .x. Y ) = ( x .x. y ) ) |
| 12 |
1 2 3 4 5 6
|
elringlsm |
|- ( ph -> ( ( X .x. Y ) e. ( E .X. F ) <-> E. x e. E E. y e. F ( X .x. Y ) = ( x .x. y ) ) ) |
| 13 |
11 12
|
mpbird |
|- ( ph -> ( X .x. Y ) e. ( E .X. F ) ) |