Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elringlsm.1 | |- B = ( Base ` R ) |
|
elringlsm.2 | |- .x. = ( .r ` R ) |
||
elringlsm.3 | |- G = ( mulGrp ` R ) |
||
elringlsm.4 | |- .X. = ( LSSum ` G ) |
||
elringlsm.6 | |- ( ph -> E C_ B ) |
||
elringlsm.7 | |- ( ph -> F C_ B ) |
||
Assertion | elringlsm | |- ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elringlsm.1 | |- B = ( Base ` R ) |
|
2 | elringlsm.2 | |- .x. = ( .r ` R ) |
|
3 | elringlsm.3 | |- G = ( mulGrp ` R ) |
|
4 | elringlsm.4 | |- .X. = ( LSSum ` G ) |
|
5 | elringlsm.6 | |- ( ph -> E C_ B ) |
|
6 | elringlsm.7 | |- ( ph -> F C_ B ) |
|
7 | 3 | fvexi | |- G e. _V |
8 | 3 1 | mgpbas | |- B = ( Base ` G ) |
9 | 3 2 | mgpplusg | |- .x. = ( +g ` G ) |
10 | 8 9 4 | lsmelvalx | |- ( ( G e. _V /\ E C_ B /\ F C_ B ) -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) |
11 | 7 5 6 10 | mp3an2i | |- ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) |