Metamath Proof Explorer


Theorem elringlsm

Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)

Ref Expression
Hypotheses elringlsm.1
|- B = ( Base ` R )
elringlsm.2
|- .x. = ( .r ` R )
elringlsm.3
|- G = ( mulGrp ` R )
elringlsm.4
|- .X. = ( LSSum ` G )
elringlsm.6
|- ( ph -> E C_ B )
elringlsm.7
|- ( ph -> F C_ B )
Assertion elringlsm
|- ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) )

Proof

Step Hyp Ref Expression
1 elringlsm.1
 |-  B = ( Base ` R )
2 elringlsm.2
 |-  .x. = ( .r ` R )
3 elringlsm.3
 |-  G = ( mulGrp ` R )
4 elringlsm.4
 |-  .X. = ( LSSum ` G )
5 elringlsm.6
 |-  ( ph -> E C_ B )
6 elringlsm.7
 |-  ( ph -> F C_ B )
7 3 fvexi
 |-  G e. _V
8 3 1 mgpbas
 |-  B = ( Base ` G )
9 3 2 mgpplusg
 |-  .x. = ( +g ` G )
10 8 9 4 lsmelvalx
 |-  ( ( G e. _V /\ E C_ B /\ F C_ B ) -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) )
11 7 5 6 10 mp3an2i
 |-  ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) )