Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elringlsm.1 | |- B = ( Base ` R ) |
|
| elringlsm.2 | |- .x. = ( .r ` R ) |
||
| elringlsm.3 | |- G = ( mulGrp ` R ) |
||
| elringlsm.4 | |- .X. = ( LSSum ` G ) |
||
| elringlsm.6 | |- ( ph -> E C_ B ) |
||
| elringlsm.7 | |- ( ph -> F C_ B ) |
||
| Assertion | elringlsm | |- ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elringlsm.1 | |- B = ( Base ` R ) |
|
| 2 | elringlsm.2 | |- .x. = ( .r ` R ) |
|
| 3 | elringlsm.3 | |- G = ( mulGrp ` R ) |
|
| 4 | elringlsm.4 | |- .X. = ( LSSum ` G ) |
|
| 5 | elringlsm.6 | |- ( ph -> E C_ B ) |
|
| 6 | elringlsm.7 | |- ( ph -> F C_ B ) |
|
| 7 | 3 | fvexi | |- G e. _V |
| 8 | 3 1 | mgpbas | |- B = ( Base ` G ) |
| 9 | 3 2 | mgpplusg | |- .x. = ( +g ` G ) |
| 10 | 8 9 4 | lsmelvalx | |- ( ( G e. _V /\ E C_ B /\ F C_ B ) -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) |
| 11 | 7 5 6 10 | mp3an2i | |- ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) |