Metamath Proof Explorer


Theorem elringlsm

Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)

Ref Expression
Hypotheses elringlsm.1 B=BaseR
elringlsm.2 ·˙=R
elringlsm.3 G=mulGrpR
elringlsm.4 ×˙=LSSumG
elringlsm.6 φEB
elringlsm.7 φFB
Assertion elringlsm φZE×˙FxEyFZ=x·˙y

Proof

Step Hyp Ref Expression
1 elringlsm.1 B=BaseR
2 elringlsm.2 ·˙=R
3 elringlsm.3 G=mulGrpR
4 elringlsm.4 ×˙=LSSumG
5 elringlsm.6 φEB
6 elringlsm.7 φFB
7 3 fvexi GV
8 3 1 mgpbas B=BaseG
9 3 2 mgpplusg ·˙=+G
10 8 9 4 lsmelvalx GVEBFBZE×˙FxEyFZ=x·˙y
11 7 5 6 10 mp3an2i φZE×˙FxEyFZ=x·˙y