Metamath Proof Explorer
Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)
|
|
Ref |
Expression |
|
Hypotheses |
elringlsm.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
elringlsm.2 |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
elringlsm.3 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
|
|
elringlsm.4 |
⊢ × = ( LSSum ‘ 𝐺 ) |
|
|
elringlsm.6 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
|
|
elringlsm.7 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
|
Assertion |
elringlsm |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐸 × 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐹 𝑍 = ( 𝑥 · 𝑦 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elringlsm.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
elringlsm.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
elringlsm.3 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
4 |
|
elringlsm.4 |
⊢ × = ( LSSum ‘ 𝐺 ) |
5 |
|
elringlsm.6 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
6 |
|
elringlsm.7 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
7 |
3
|
fvexi |
⊢ 𝐺 ∈ V |
8 |
3 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
9 |
3 2
|
mgpplusg |
⊢ · = ( +g ‘ 𝐺 ) |
10 |
8 9 4
|
lsmelvalx |
⊢ ( ( 𝐺 ∈ V ∧ 𝐸 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝑍 ∈ ( 𝐸 × 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐹 𝑍 = ( 𝑥 · 𝑦 ) ) ) |
11 |
7 5 6 10
|
mp3an2i |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐸 × 𝐹 ) ↔ ∃ 𝑥 ∈ 𝐸 ∃ 𝑦 ∈ 𝐹 𝑍 = ( 𝑥 · 𝑦 ) ) ) |