Metamath Proof Explorer


Theorem ringlsmss

Description: Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)

Ref Expression
Hypotheses ringlsmss.1
|- B = ( Base ` R )
ringlsmss.2
|- G = ( mulGrp ` R )
ringlsmss.3
|- .X. = ( LSSum ` G )
ringlsmss.4
|- ( ph -> R e. Ring )
ringlsmss.5
|- ( ph -> E C_ B )
ringlsmss.6
|- ( ph -> F C_ B )
Assertion ringlsmss
|- ( ph -> ( E .X. F ) C_ B )

Proof

Step Hyp Ref Expression
1 ringlsmss.1
 |-  B = ( Base ` R )
2 ringlsmss.2
 |-  G = ( mulGrp ` R )
3 ringlsmss.3
 |-  .X. = ( LSSum ` G )
4 ringlsmss.4
 |-  ( ph -> R e. Ring )
5 ringlsmss.5
 |-  ( ph -> E C_ B )
6 ringlsmss.6
 |-  ( ph -> F C_ B )
7 2 ringmgp
 |-  ( R e. Ring -> G e. Mnd )
8 4 7 syl
 |-  ( ph -> G e. Mnd )
9 2 1 mgpbas
 |-  B = ( Base ` G )
10 9 3 lsmssv
 |-  ( ( G e. Mnd /\ E C_ B /\ F C_ B ) -> ( E .X. F ) C_ B )
11 8 5 6 10 syl3anc
 |-  ( ph -> ( E .X. F ) C_ B )