Description: Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlsmss.1 | |- B = ( Base ` R ) |
|
| ringlsmss.2 | |- G = ( mulGrp ` R ) |
||
| ringlsmss.3 | |- .X. = ( LSSum ` G ) |
||
| ringlsmss.4 | |- ( ph -> R e. Ring ) |
||
| ringlsmss.5 | |- ( ph -> E C_ B ) |
||
| ringlsmss.6 | |- ( ph -> F C_ B ) |
||
| Assertion | ringlsmss | |- ( ph -> ( E .X. F ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlsmss.1 | |- B = ( Base ` R ) |
|
| 2 | ringlsmss.2 | |- G = ( mulGrp ` R ) |
|
| 3 | ringlsmss.3 | |- .X. = ( LSSum ` G ) |
|
| 4 | ringlsmss.4 | |- ( ph -> R e. Ring ) |
|
| 5 | ringlsmss.5 | |- ( ph -> E C_ B ) |
|
| 6 | ringlsmss.6 | |- ( ph -> F C_ B ) |
|
| 7 | 2 | ringmgp | |- ( R e. Ring -> G e. Mnd ) |
| 8 | 4 7 | syl | |- ( ph -> G e. Mnd ) |
| 9 | 2 1 | mgpbas | |- B = ( Base ` G ) |
| 10 | 9 3 | lsmssv | |- ( ( G e. Mnd /\ E C_ B /\ F C_ B ) -> ( E .X. F ) C_ B ) |
| 11 | 8 5 6 10 | syl3anc | |- ( ph -> ( E .X. F ) C_ B ) |