Metamath Proof Explorer


Theorem ringlsmss

Description: Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)

Ref Expression
Hypotheses ringlsmss.1 B = Base R
ringlsmss.2 G = mulGrp R
ringlsmss.3 × ˙ = LSSum G
ringlsmss.4 φ R Ring
ringlsmss.5 φ E B
ringlsmss.6 φ F B
Assertion ringlsmss φ E × ˙ F B

Proof

Step Hyp Ref Expression
1 ringlsmss.1 B = Base R
2 ringlsmss.2 G = mulGrp R
3 ringlsmss.3 × ˙ = LSSum G
4 ringlsmss.4 φ R Ring
5 ringlsmss.5 φ E B
6 ringlsmss.6 φ F B
7 2 ringmgp R Ring G Mnd
8 4 7 syl φ G Mnd
9 2 1 mgpbas B = Base G
10 9 3 lsmssv G Mnd E B F B E × ˙ F B
11 8 5 6 10 syl3anc φ E × ˙ F B