Metamath Proof Explorer
Description: Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)
|
|
Ref |
Expression |
|
Hypotheses |
ringlsmss.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringlsmss.2 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
|
|
ringlsmss.3 |
⊢ × = ( LSSum ‘ 𝐺 ) |
|
|
ringlsmss.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringlsmss.5 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
|
|
ringlsmss.6 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
|
Assertion |
ringlsmss |
⊢ ( 𝜑 → ( 𝐸 × 𝐹 ) ⊆ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringlsmss.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringlsmss.2 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
3 |
|
ringlsmss.3 |
⊢ × = ( LSSum ‘ 𝐺 ) |
4 |
|
ringlsmss.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringlsmss.5 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
6 |
|
ringlsmss.6 |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
7 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
9 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
10 |
9 3
|
lsmssv |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵 ) → ( 𝐸 × 𝐹 ) ⊆ 𝐵 ) |
11 |
8 5 6 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 × 𝐹 ) ⊆ 𝐵 ) |