Step |
Hyp |
Ref |
Expression |
1 |
|
ringlsmss.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringlsmss.2 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
3 |
|
ringlsmss.3 |
⊢ × = ( LSSum ‘ 𝐺 ) |
4 |
|
ringlsmss1.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
ringlsmss1.2 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
6 |
|
ringlsmss1.3 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
7 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐼 × 𝐸 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑎 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) → 𝑎 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) |
8 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑅 ∈ CRing ) |
9 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐵 ) |
10 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
12 |
1 11
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
14 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐵 ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑖 ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
17 |
1 16
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐵 ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) |
18 |
8 10 15 17
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) |
19 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑅 ∈ Ring ) |
22 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → 𝑖 ∈ 𝐼 ) |
24 |
11 1 16
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼 ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ∈ 𝐼 ) |
25 |
21 22 10 23 24
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ∈ 𝐼 ) |
26 |
18 25
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ∈ 𝐼 ) |
27 |
26
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐼 × 𝐸 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) → ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ∈ 𝐼 ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐼 × 𝐸 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑎 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) → ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ∈ 𝐼 ) |
29 |
7 28
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐼 × 𝐸 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑎 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) → 𝑎 ∈ 𝐼 ) |
30 |
1 16 2 3 13 5
|
elringlsm |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐼 × 𝐸 ) ↔ ∃ 𝑖 ∈ 𝐼 ∃ 𝑒 ∈ 𝐸 𝑎 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐼 × 𝐸 ) ) → ∃ 𝑖 ∈ 𝐼 ∃ 𝑒 ∈ 𝐸 𝑎 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑒 ) ) |
32 |
29 31
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐼 × 𝐸 ) ) → 𝑎 ∈ 𝐼 ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐼 × 𝐸 ) → 𝑎 ∈ 𝐼 ) ) |
34 |
33
|
ssrdv |
⊢ ( 𝜑 → ( 𝐼 × 𝐸 ) ⊆ 𝐼 ) |