Step |
Hyp |
Ref |
Expression |
1 |
|
ringlsmss.1 |
|- B = ( Base ` R ) |
2 |
|
ringlsmss.2 |
|- G = ( mulGrp ` R ) |
3 |
|
ringlsmss.3 |
|- .X. = ( LSSum ` G ) |
4 |
|
ringlsmss1.1 |
|- ( ph -> R e. CRing ) |
5 |
|
ringlsmss1.2 |
|- ( ph -> E C_ B ) |
6 |
|
ringlsmss1.3 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
7 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( I .X. E ) ) /\ i e. I ) /\ e e. E ) /\ a = ( i ( .r ` R ) e ) ) -> a = ( i ( .r ` R ) e ) ) |
8 |
4
|
ad2antrr |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> R e. CRing ) |
9 |
5
|
sselda |
|- ( ( ph /\ e e. E ) -> e e. B ) |
10 |
9
|
adantlr |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> e e. B ) |
11 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
12 |
1 11
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ B ) |
13 |
6 12
|
syl |
|- ( ph -> I C_ B ) |
14 |
13
|
sselda |
|- ( ( ph /\ i e. I ) -> i e. B ) |
15 |
14
|
adantr |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> i e. B ) |
16 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
17 |
1 16
|
crngcom |
|- ( ( R e. CRing /\ e e. B /\ i e. B ) -> ( e ( .r ` R ) i ) = ( i ( .r ` R ) e ) ) |
18 |
8 10 15 17
|
syl3anc |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> ( e ( .r ` R ) i ) = ( i ( .r ` R ) e ) ) |
19 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
20 |
4 19
|
syl |
|- ( ph -> R e. Ring ) |
21 |
20
|
ad2antrr |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> R e. Ring ) |
22 |
6
|
ad2antrr |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> I e. ( LIdeal ` R ) ) |
23 |
|
simplr |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> i e. I ) |
24 |
11 1 16
|
lidlmcl |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( e e. B /\ i e. I ) ) -> ( e ( .r ` R ) i ) e. I ) |
25 |
21 22 10 23 24
|
syl22anc |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> ( e ( .r ` R ) i ) e. I ) |
26 |
18 25
|
eqeltrrd |
|- ( ( ( ph /\ i e. I ) /\ e e. E ) -> ( i ( .r ` R ) e ) e. I ) |
27 |
26
|
adantllr |
|- ( ( ( ( ph /\ a e. ( I .X. E ) ) /\ i e. I ) /\ e e. E ) -> ( i ( .r ` R ) e ) e. I ) |
28 |
27
|
adantr |
|- ( ( ( ( ( ph /\ a e. ( I .X. E ) ) /\ i e. I ) /\ e e. E ) /\ a = ( i ( .r ` R ) e ) ) -> ( i ( .r ` R ) e ) e. I ) |
29 |
7 28
|
eqeltrd |
|- ( ( ( ( ( ph /\ a e. ( I .X. E ) ) /\ i e. I ) /\ e e. E ) /\ a = ( i ( .r ` R ) e ) ) -> a e. I ) |
30 |
1 16 2 3 13 5
|
elringlsm |
|- ( ph -> ( a e. ( I .X. E ) <-> E. i e. I E. e e. E a = ( i ( .r ` R ) e ) ) ) |
31 |
30
|
biimpa |
|- ( ( ph /\ a e. ( I .X. E ) ) -> E. i e. I E. e e. E a = ( i ( .r ` R ) e ) ) |
32 |
29 31
|
r19.29vva |
|- ( ( ph /\ a e. ( I .X. E ) ) -> a e. I ) |
33 |
32
|
ex |
|- ( ph -> ( a e. ( I .X. E ) -> a e. I ) ) |
34 |
33
|
ssrdv |
|- ( ph -> ( I .X. E ) C_ I ) |