Step |
Hyp |
Ref |
Expression |
1 |
|
ringlsmss.1 |
|- B = ( Base ` R ) |
2 |
|
ringlsmss.2 |
|- G = ( mulGrp ` R ) |
3 |
|
ringlsmss.3 |
|- .X. = ( LSSum ` G ) |
4 |
|
ringlsmss2.1 |
|- ( ph -> R e. Ring ) |
5 |
|
ringlsmss2.2 |
|- ( ph -> E C_ B ) |
6 |
|
ringlsmss2.3 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
7 |
|
simpr |
|- ( ( ( ( ( ph /\ a e. ( E .X. I ) ) /\ e e. E ) /\ i e. I ) /\ a = ( e ( .r ` R ) i ) ) -> a = ( e ( .r ` R ) i ) ) |
8 |
4
|
ad2antrr |
|- ( ( ( ph /\ e e. E ) /\ i e. I ) -> R e. Ring ) |
9 |
6
|
ad2antrr |
|- ( ( ( ph /\ e e. E ) /\ i e. I ) -> I e. ( LIdeal ` R ) ) |
10 |
5
|
sselda |
|- ( ( ph /\ e e. E ) -> e e. B ) |
11 |
10
|
adantr |
|- ( ( ( ph /\ e e. E ) /\ i e. I ) -> e e. B ) |
12 |
|
simpr |
|- ( ( ( ph /\ e e. E ) /\ i e. I ) -> i e. I ) |
13 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
15 |
13 1 14
|
lidlmcl |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( e e. B /\ i e. I ) ) -> ( e ( .r ` R ) i ) e. I ) |
16 |
8 9 11 12 15
|
syl22anc |
|- ( ( ( ph /\ e e. E ) /\ i e. I ) -> ( e ( .r ` R ) i ) e. I ) |
17 |
16
|
adantllr |
|- ( ( ( ( ph /\ a e. ( E .X. I ) ) /\ e e. E ) /\ i e. I ) -> ( e ( .r ` R ) i ) e. I ) |
18 |
17
|
adantr |
|- ( ( ( ( ( ph /\ a e. ( E .X. I ) ) /\ e e. E ) /\ i e. I ) /\ a = ( e ( .r ` R ) i ) ) -> ( e ( .r ` R ) i ) e. I ) |
19 |
7 18
|
eqeltrd |
|- ( ( ( ( ( ph /\ a e. ( E .X. I ) ) /\ e e. E ) /\ i e. I ) /\ a = ( e ( .r ` R ) i ) ) -> a e. I ) |
20 |
1 13
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ B ) |
21 |
6 20
|
syl |
|- ( ph -> I C_ B ) |
22 |
1 14 2 3 5 21
|
elringlsm |
|- ( ph -> ( a e. ( E .X. I ) <-> E. e e. E E. i e. I a = ( e ( .r ` R ) i ) ) ) |
23 |
22
|
biimpa |
|- ( ( ph /\ a e. ( E .X. I ) ) -> E. e e. E E. i e. I a = ( e ( .r ` R ) i ) ) |
24 |
19 23
|
r19.29vva |
|- ( ( ph /\ a e. ( E .X. I ) ) -> a e. I ) |
25 |
24
|
ex |
|- ( ph -> ( a e. ( E .X. I ) -> a e. I ) ) |
26 |
25
|
ssrdv |
|- ( ph -> ( E .X. I ) C_ I ) |