Metamath Proof Explorer


Theorem ringlsmss2

Description: The product with an ideal of a ring is a subset of that ideal. (Contributed by Thierry Arnoux, 2-Jun-2024)

Ref Expression
Hypotheses ringlsmss.1 𝐵 = ( Base ‘ 𝑅 )
ringlsmss.2 𝐺 = ( mulGrp ‘ 𝑅 )
ringlsmss.3 × = ( LSSum ‘ 𝐺 )
ringlsmss2.1 ( 𝜑𝑅 ∈ Ring )
ringlsmss2.2 ( 𝜑𝐸𝐵 )
ringlsmss2.3 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
Assertion ringlsmss2 ( 𝜑 → ( 𝐸 × 𝐼 ) ⊆ 𝐼 )

Proof

Step Hyp Ref Expression
1 ringlsmss.1 𝐵 = ( Base ‘ 𝑅 )
2 ringlsmss.2 𝐺 = ( mulGrp ‘ 𝑅 )
3 ringlsmss.3 × = ( LSSum ‘ 𝐺 )
4 ringlsmss2.1 ( 𝜑𝑅 ∈ Ring )
5 ringlsmss2.2 ( 𝜑𝐸𝐵 )
6 ringlsmss2.3 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
7 simpr ( ( ( ( ( 𝜑𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒𝐸 ) ∧ 𝑖𝐼 ) ∧ 𝑎 = ( 𝑒 ( .r𝑅 ) 𝑖 ) ) → 𝑎 = ( 𝑒 ( .r𝑅 ) 𝑖 ) )
8 4 ad2antrr ( ( ( 𝜑𝑒𝐸 ) ∧ 𝑖𝐼 ) → 𝑅 ∈ Ring )
9 6 ad2antrr ( ( ( 𝜑𝑒𝐸 ) ∧ 𝑖𝐼 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
10 5 sselda ( ( 𝜑𝑒𝐸 ) → 𝑒𝐵 )
11 10 adantr ( ( ( 𝜑𝑒𝐸 ) ∧ 𝑖𝐼 ) → 𝑒𝐵 )
12 simpr ( ( ( 𝜑𝑒𝐸 ) ∧ 𝑖𝐼 ) → 𝑖𝐼 )
13 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
14 eqid ( .r𝑅 ) = ( .r𝑅 )
15 13 1 14 lidlmcl ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒𝐵𝑖𝐼 ) ) → ( 𝑒 ( .r𝑅 ) 𝑖 ) ∈ 𝐼 )
16 8 9 11 12 15 syl22anc ( ( ( 𝜑𝑒𝐸 ) ∧ 𝑖𝐼 ) → ( 𝑒 ( .r𝑅 ) 𝑖 ) ∈ 𝐼 )
17 16 adantllr ( ( ( ( 𝜑𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒𝐸 ) ∧ 𝑖𝐼 ) → ( 𝑒 ( .r𝑅 ) 𝑖 ) ∈ 𝐼 )
18 17 adantr ( ( ( ( ( 𝜑𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒𝐸 ) ∧ 𝑖𝐼 ) ∧ 𝑎 = ( 𝑒 ( .r𝑅 ) 𝑖 ) ) → ( 𝑒 ( .r𝑅 ) 𝑖 ) ∈ 𝐼 )
19 7 18 eqeltrd ( ( ( ( ( 𝜑𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒𝐸 ) ∧ 𝑖𝐼 ) ∧ 𝑎 = ( 𝑒 ( .r𝑅 ) 𝑖 ) ) → 𝑎𝐼 )
20 1 13 lidlss ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼𝐵 )
21 6 20 syl ( 𝜑𝐼𝐵 )
22 1 14 2 3 5 21 elringlsm ( 𝜑 → ( 𝑎 ∈ ( 𝐸 × 𝐼 ) ↔ ∃ 𝑒𝐸𝑖𝐼 𝑎 = ( 𝑒 ( .r𝑅 ) 𝑖 ) ) )
23 22 biimpa ( ( 𝜑𝑎 ∈ ( 𝐸 × 𝐼 ) ) → ∃ 𝑒𝐸𝑖𝐼 𝑎 = ( 𝑒 ( .r𝑅 ) 𝑖 ) )
24 19 23 r19.29vva ( ( 𝜑𝑎 ∈ ( 𝐸 × 𝐼 ) ) → 𝑎𝐼 )
25 24 ex ( 𝜑 → ( 𝑎 ∈ ( 𝐸 × 𝐼 ) → 𝑎𝐼 ) )
26 25 ssrdv ( 𝜑 → ( 𝐸 × 𝐼 ) ⊆ 𝐼 )