Step |
Hyp |
Ref |
Expression |
1 |
|
ringlsmss.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ringlsmss.2 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
3 |
|
ringlsmss.3 |
⊢ × = ( LSSum ‘ 𝐺 ) |
4 |
|
ringlsmss2.1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ringlsmss2.2 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
6 |
|
ringlsmss2.3 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
7 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑎 = ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ) → 𝑎 = ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ) |
8 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
9 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
10 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑒 ∈ 𝐵 ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
13 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
15 |
13 1 14
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑒 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼 ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ∈ 𝐼 ) |
16 |
8 9 11 12 15
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ∈ 𝐼 ) |
17 |
16
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ∈ 𝐼 ) |
18 |
17
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑎 = ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ) → ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ∈ 𝐼 ) |
19 |
7 18
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐸 × 𝐼 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑎 = ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ) → 𝑎 ∈ 𝐼 ) |
20 |
1 13
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
21 |
6 20
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
22 |
1 14 2 3 5 21
|
elringlsm |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐸 × 𝐼 ) ↔ ∃ 𝑒 ∈ 𝐸 ∃ 𝑖 ∈ 𝐼 𝑎 = ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐸 × 𝐼 ) ) → ∃ 𝑒 ∈ 𝐸 ∃ 𝑖 ∈ 𝐼 𝑎 = ( 𝑒 ( .r ‘ 𝑅 ) 𝑖 ) ) |
24 |
19 23
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐸 × 𝐼 ) ) → 𝑎 ∈ 𝐼 ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐸 × 𝐼 ) → 𝑎 ∈ 𝐼 ) ) |
26 |
25
|
ssrdv |
⊢ ( 𝜑 → ( 𝐸 × 𝐼 ) ⊆ 𝐼 ) |