Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsnpridl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
lsmsnpridl.2 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
3 |
|
lsmsnpridl.3 |
⊢ × = ( LSSum ‘ 𝐺 ) |
4 |
|
lsmsnpridl.4 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
5 |
|
lsmsnpridl.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
lsmsnpridl.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
2 8
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
10 |
2
|
fvexi |
⊢ 𝐺 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
12 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
13 |
7 9 3 11 12 6
|
elgrplsmsn |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 × { 𝑋 } ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
14 |
1 8 4
|
rspsnel |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
15 |
5 6 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
16 |
13 15
|
bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 × { 𝑋 } ) ↔ 𝑥 ∈ ( 𝐾 ‘ { 𝑋 } ) ) ) |
17 |
16
|
eqrdv |
⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑋 } ) ) |