Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsnpridl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
lsmsnpridl.2 |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
3 |
|
lsmsnpridl.3 |
⊢ × = ( LSSum ‘ 𝐺 ) |
4 |
|
lsmsnpridl.4 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
5 |
|
lsmsnpridl.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
lsmsnpridl.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
sneq |
⊢ ( 𝑦 = 𝑋 → { 𝑦 } = { 𝑋 } ) |
8 |
7
|
fveq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝐾 ‘ { 𝑦 } ) = ( 𝐾 ‘ { 𝑋 } ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑦 } ) ↔ ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑋 } ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑋 ) → ( ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑦 } ) ↔ ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑋 } ) ) ) |
11 |
1 2 3 4 5 6
|
lsmsnpridl |
⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑋 } ) ) |
12 |
6 10 11
|
rspcedvd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑦 } ) ) |
13 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) |
14 |
13 4 1
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐵 × { 𝑋 } ) ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑦 } ) ) ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐵 × { 𝑋 } ) = ( 𝐾 ‘ { 𝑦 } ) ) ) |
16 |
12 15
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) ∈ ( LPIdeal ‘ 𝑅 ) ) |