Metamath Proof Explorer


Theorem lsmsnidl

Description: The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmsnpridl.1
|- B = ( Base ` R )
lsmsnpridl.2
|- G = ( mulGrp ` R )
lsmsnpridl.3
|- .X. = ( LSSum ` G )
lsmsnpridl.4
|- K = ( RSpan ` R )
lsmsnpridl.5
|- ( ph -> R e. Ring )
lsmsnpridl.6
|- ( ph -> X e. B )
Assertion lsmsnidl
|- ( ph -> ( B .X. { X } ) e. ( LPIdeal ` R ) )

Proof

Step Hyp Ref Expression
1 lsmsnpridl.1
 |-  B = ( Base ` R )
2 lsmsnpridl.2
 |-  G = ( mulGrp ` R )
3 lsmsnpridl.3
 |-  .X. = ( LSSum ` G )
4 lsmsnpridl.4
 |-  K = ( RSpan ` R )
5 lsmsnpridl.5
 |-  ( ph -> R e. Ring )
6 lsmsnpridl.6
 |-  ( ph -> X e. B )
7 sneq
 |-  ( y = X -> { y } = { X } )
8 7 fveq2d
 |-  ( y = X -> ( K ` { y } ) = ( K ` { X } ) )
9 8 eqeq2d
 |-  ( y = X -> ( ( B .X. { X } ) = ( K ` { y } ) <-> ( B .X. { X } ) = ( K ` { X } ) ) )
10 9 adantl
 |-  ( ( ph /\ y = X ) -> ( ( B .X. { X } ) = ( K ` { y } ) <-> ( B .X. { X } ) = ( K ` { X } ) ) )
11 1 2 3 4 5 6 lsmsnpridl
 |-  ( ph -> ( B .X. { X } ) = ( K ` { X } ) )
12 6 10 11 rspcedvd
 |-  ( ph -> E. y e. B ( B .X. { X } ) = ( K ` { y } ) )
13 eqid
 |-  ( LPIdeal ` R ) = ( LPIdeal ` R )
14 13 4 1 islpidl
 |-  ( R e. Ring -> ( ( B .X. { X } ) e. ( LPIdeal ` R ) <-> E. y e. B ( B .X. { X } ) = ( K ` { y } ) ) )
15 5 14 syl
 |-  ( ph -> ( ( B .X. { X } ) e. ( LPIdeal ` R ) <-> E. y e. B ( B .X. { X } ) = ( K ` { y } ) ) )
16 12 15 mpbird
 |-  ( ph -> ( B .X. { X } ) e. ( LPIdeal ` R ) )