Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsnpridl.1 |
|- B = ( Base ` R ) |
2 |
|
lsmsnpridl.2 |
|- G = ( mulGrp ` R ) |
3 |
|
lsmsnpridl.3 |
|- .X. = ( LSSum ` G ) |
4 |
|
lsmsnpridl.4 |
|- K = ( RSpan ` R ) |
5 |
|
lsmsnpridl.5 |
|- ( ph -> R e. Ring ) |
6 |
|
lsmsnpridl.6 |
|- ( ph -> X e. B ) |
7 |
|
sneq |
|- ( y = X -> { y } = { X } ) |
8 |
7
|
fveq2d |
|- ( y = X -> ( K ` { y } ) = ( K ` { X } ) ) |
9 |
8
|
eqeq2d |
|- ( y = X -> ( ( B .X. { X } ) = ( K ` { y } ) <-> ( B .X. { X } ) = ( K ` { X } ) ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ y = X ) -> ( ( B .X. { X } ) = ( K ` { y } ) <-> ( B .X. { X } ) = ( K ` { X } ) ) ) |
11 |
1 2 3 4 5 6
|
lsmsnpridl |
|- ( ph -> ( B .X. { X } ) = ( K ` { X } ) ) |
12 |
6 10 11
|
rspcedvd |
|- ( ph -> E. y e. B ( B .X. { X } ) = ( K ` { y } ) ) |
13 |
|
eqid |
|- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
14 |
13 4 1
|
islpidl |
|- ( R e. Ring -> ( ( B .X. { X } ) e. ( LPIdeal ` R ) <-> E. y e. B ( B .X. { X } ) = ( K ` { y } ) ) ) |
15 |
5 14
|
syl |
|- ( ph -> ( ( B .X. { X } ) e. ( LPIdeal ` R ) <-> E. y e. B ( B .X. { X } ) = ( K ` { y } ) ) ) |
16 |
12 15
|
mpbird |
|- ( ph -> ( B .X. { X } ) e. ( LPIdeal ` R ) ) |