| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmidl.1 |
|- B = ( Base ` R ) |
| 2 |
|
lsmidl.3 |
|- .(+) = ( LSSum ` R ) |
| 3 |
|
lsmidl.4 |
|- K = ( RSpan ` R ) |
| 4 |
|
lsmidl.5 |
|- ( ph -> R e. Ring ) |
| 5 |
|
lsmidl.6 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 6 |
|
lsmidl.7 |
|- ( ph -> J e. ( LIdeal ` R ) ) |
| 7 |
|
rlmlsm |
|- ( R e. Ring -> ( LSSum ` R ) = ( LSSum ` ( ringLMod ` R ) ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> ( LSSum ` R ) = ( LSSum ` ( ringLMod ` R ) ) ) |
| 9 |
2 8
|
eqtrid |
|- ( ph -> .(+) = ( LSSum ` ( ringLMod ` R ) ) ) |
| 10 |
9
|
oveqd |
|- ( ph -> ( I .(+) J ) = ( I ( LSSum ` ( ringLMod ` R ) ) J ) ) |
| 11 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
| 12 |
4 11
|
syl |
|- ( ph -> ( ringLMod ` R ) e. LMod ) |
| 13 |
|
lidlval |
|- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
| 14 |
|
rspval |
|- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
| 15 |
3 14
|
eqtri |
|- K = ( LSpan ` ( ringLMod ` R ) ) |
| 16 |
|
eqid |
|- ( LSSum ` ( ringLMod ` R ) ) = ( LSSum ` ( ringLMod ` R ) ) |
| 17 |
13 15 16
|
lsmsp |
|- ( ( ( ringLMod ` R ) e. LMod /\ I e. ( LIdeal ` R ) /\ J e. ( LIdeal ` R ) ) -> ( I ( LSSum ` ( ringLMod ` R ) ) J ) = ( K ` ( I u. J ) ) ) |
| 18 |
12 5 6 17
|
syl3anc |
|- ( ph -> ( I ( LSSum ` ( ringLMod ` R ) ) J ) = ( K ` ( I u. J ) ) ) |
| 19 |
10 18
|
eqtrd |
|- ( ph -> ( I .(+) J ) = ( K ` ( I u. J ) ) ) |