Step |
Hyp |
Ref |
Expression |
1 |
|
lsmidl.1 |
|- B = ( Base ` R ) |
2 |
|
lsmidl.3 |
|- .(+) = ( LSSum ` R ) |
3 |
|
lsmidl.4 |
|- K = ( RSpan ` R ) |
4 |
|
lsmidl.5 |
|- ( ph -> R e. Ring ) |
5 |
|
lsmidl.6 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
6 |
|
lsmidl.7 |
|- ( ph -> J e. ( LIdeal ` R ) ) |
7 |
1 2 3 4 5 6
|
lsmidllsp |
|- ( ph -> ( I .(+) J ) = ( K ` ( I u. J ) ) ) |
8 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
9 |
4 8
|
syl |
|- ( ph -> ( ringLMod ` R ) e. LMod ) |
10 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
11 |
1 10
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ B ) |
12 |
5 11
|
syl |
|- ( ph -> I C_ B ) |
13 |
1 10
|
lidlss |
|- ( J e. ( LIdeal ` R ) -> J C_ B ) |
14 |
6 13
|
syl |
|- ( ph -> J C_ B ) |
15 |
12 14
|
unssd |
|- ( ph -> ( I u. J ) C_ B ) |
16 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
17 |
1 16
|
eqtri |
|- B = ( Base ` ( ringLMod ` R ) ) |
18 |
|
lidlval |
|- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
19 |
|
rspval |
|- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
20 |
3 19
|
eqtri |
|- K = ( LSpan ` ( ringLMod ` R ) ) |
21 |
17 18 20
|
lspcl |
|- ( ( ( ringLMod ` R ) e. LMod /\ ( I u. J ) C_ B ) -> ( K ` ( I u. J ) ) e. ( LIdeal ` R ) ) |
22 |
9 15 21
|
syl2anc |
|- ( ph -> ( K ` ( I u. J ) ) e. ( LIdeal ` R ) ) |
23 |
7 22
|
eqeltrd |
|- ( ph -> ( I .(+) J ) e. ( LIdeal ` R ) ) |