Metamath Proof Explorer


Theorem lsmidl

Description: The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmidl.1 B=BaseR
lsmidl.3 ˙=LSSumR
lsmidl.4 K=RSpanR
lsmidl.5 φRRing
lsmidl.6 φILIdealR
lsmidl.7 φJLIdealR
Assertion lsmidl φI˙JLIdealR

Proof

Step Hyp Ref Expression
1 lsmidl.1 B=BaseR
2 lsmidl.3 ˙=LSSumR
3 lsmidl.4 K=RSpanR
4 lsmidl.5 φRRing
5 lsmidl.6 φILIdealR
6 lsmidl.7 φJLIdealR
7 1 2 3 4 5 6 lsmidllsp φI˙J=KIJ
8 rlmlmod RRingringLModRLMod
9 4 8 syl φringLModRLMod
10 eqid LIdealR=LIdealR
11 1 10 lidlss ILIdealRIB
12 5 11 syl φIB
13 1 10 lidlss JLIdealRJB
14 6 13 syl φJB
15 12 14 unssd φIJB
16 rlmbas BaseR=BaseringLModR
17 1 16 eqtri B=BaseringLModR
18 lidlval LIdealR=LSubSpringLModR
19 rspval RSpanR=LSpanringLModR
20 3 19 eqtri K=LSpanringLModR
21 17 18 20 lspcl ringLModRLModIJBKIJLIdealR
22 9 15 21 syl2anc φKIJLIdealR
23 7 22 eqeltrd φI˙JLIdealR