Metamath Proof Explorer


Theorem lsmidl

Description: The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmidl.1 𝐵 = ( Base ‘ 𝑅 )
lsmidl.3 = ( LSSum ‘ 𝑅 )
lsmidl.4 𝐾 = ( RSpan ‘ 𝑅 )
lsmidl.5 ( 𝜑𝑅 ∈ Ring )
lsmidl.6 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
lsmidl.7 ( 𝜑𝐽 ∈ ( LIdeal ‘ 𝑅 ) )
Assertion lsmidl ( 𝜑 → ( 𝐼 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 lsmidl.1 𝐵 = ( Base ‘ 𝑅 )
2 lsmidl.3 = ( LSSum ‘ 𝑅 )
3 lsmidl.4 𝐾 = ( RSpan ‘ 𝑅 )
4 lsmidl.5 ( 𝜑𝑅 ∈ Ring )
5 lsmidl.6 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
6 lsmidl.7 ( 𝜑𝐽 ∈ ( LIdeal ‘ 𝑅 ) )
7 1 2 3 4 5 6 lsmidllsp ( 𝜑 → ( 𝐼 𝐽 ) = ( 𝐾 ‘ ( 𝐼𝐽 ) ) )
8 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
9 4 8 syl ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ LMod )
10 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
11 1 10 lidlss ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼𝐵 )
12 5 11 syl ( 𝜑𝐼𝐵 )
13 1 10 lidlss ( 𝐽 ∈ ( LIdeal ‘ 𝑅 ) → 𝐽𝐵 )
14 6 13 syl ( 𝜑𝐽𝐵 )
15 12 14 unssd ( 𝜑 → ( 𝐼𝐽 ) ⊆ 𝐵 )
16 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
17 1 16 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
18 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
19 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
20 3 19 eqtri 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
21 17 18 20 lspcl ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ ( 𝐼𝐽 ) ⊆ 𝐵 ) → ( 𝐾 ‘ ( 𝐼𝐽 ) ) ∈ ( LIdeal ‘ 𝑅 ) )
22 9 15 21 syl2anc ( 𝜑 → ( 𝐾 ‘ ( 𝐼𝐽 ) ) ∈ ( LIdeal ‘ 𝑅 ) )
23 7 22 eqeltrd ( 𝜑 → ( 𝐼 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) )