| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmidl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
lsmidl.3 |
⊢ ⊕ = ( LSSum ‘ 𝑅 ) |
| 3 |
|
lsmidl.4 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 4 |
|
lsmidl.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
lsmidl.6 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 6 |
|
lsmidl.7 |
⊢ ( 𝜑 → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 7 |
1 2 3 4 5 6
|
lsmidllsp |
⊢ ( 𝜑 → ( 𝐼 ⊕ 𝐽 ) = ( 𝐾 ‘ ( 𝐼 ∪ 𝐽 ) ) ) |
| 8 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 10 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 11 |
1 10
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 13 |
1 10
|
lidlss |
⊢ ( 𝐽 ∈ ( LIdeal ‘ 𝑅 ) → 𝐽 ⊆ 𝐵 ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐵 ) |
| 15 |
12 14
|
unssd |
⊢ ( 𝜑 → ( 𝐼 ∪ 𝐽 ) ⊆ 𝐵 ) |
| 16 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 17 |
1 16
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 18 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 19 |
|
rspval |
⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 20 |
3 19
|
eqtri |
⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 21 |
17 18 20
|
lspcl |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ ( 𝐼 ∪ 𝐽 ) ⊆ 𝐵 ) → ( 𝐾 ‘ ( 𝐼 ∪ 𝐽 ) ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 22 |
9 15 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐼 ∪ 𝐽 ) ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 23 |
7 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 ⊕ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ) |