Step |
Hyp |
Ref |
Expression |
1 |
|
lsmidl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
lsmidl.3 |
⊢ ⊕ = ( LSSum ‘ 𝑅 ) |
3 |
|
lsmidl.4 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
4 |
|
lsmidl.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
lsmidl.6 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
6 |
|
lsmidl.7 |
⊢ ( 𝜑 → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
7 |
1 2 3 4 5 6
|
lsmidllsp |
⊢ ( 𝜑 → ( 𝐼 ⊕ 𝐽 ) = ( 𝐾 ‘ ( 𝐼 ∪ 𝐽 ) ) ) |
8 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
10 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
11 |
1 10
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
13 |
1 10
|
lidlss |
⊢ ( 𝐽 ∈ ( LIdeal ‘ 𝑅 ) → 𝐽 ⊆ 𝐵 ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐵 ) |
15 |
12 14
|
unssd |
⊢ ( 𝜑 → ( 𝐼 ∪ 𝐽 ) ⊆ 𝐵 ) |
16 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
17 |
1 16
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
18 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
19 |
|
rspval |
⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
20 |
3 19
|
eqtri |
⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
21 |
17 18 20
|
lspcl |
⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ ( 𝐼 ∪ 𝐽 ) ⊆ 𝐵 ) → ( 𝐾 ‘ ( 𝐼 ∪ 𝐽 ) ) ∈ ( LIdeal ‘ 𝑅 ) ) |
22 |
9 15 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐼 ∪ 𝐽 ) ) ∈ ( LIdeal ‘ 𝑅 ) ) |
23 |
7 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 ⊕ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ) |