| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmssass.p |
|
| 2 |
|
lsmssass.b |
|
| 3 |
|
lsmssass.g |
|
| 4 |
|
lsmssass.r |
|
| 5 |
|
lsmssass.t |
|
| 6 |
|
lsmssass.u |
|
| 7 |
|
eqid |
|
| 8 |
2 7 1
|
lsmvalx |
|
| 9 |
3 4 5 8
|
syl3anc |
|
| 10 |
9
|
rexeqdv |
|
| 11 |
|
ovex |
|
| 12 |
11
|
rgen2w |
|
| 13 |
|
eqid |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
13 16
|
rexrnmpo |
|
| 18 |
12 17
|
ax-mp |
|
| 19 |
10 18
|
bitrdi |
|
| 20 |
2 7 1
|
lsmvalx |
|
| 21 |
3 5 6 20
|
syl3anc |
|
| 22 |
21
|
rexeqdv |
|
| 23 |
|
ovex |
|
| 24 |
23
|
rgen2w |
|
| 25 |
|
eqid |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
25 27
|
rexrnmpo |
|
| 29 |
24 28
|
ax-mp |
|
| 30 |
22 29
|
bitrdi |
|
| 31 |
30
|
adantr |
|
| 32 |
3
|
ad2antrr |
|
| 33 |
4
|
ad2antrr |
|
| 34 |
|
simplr |
|
| 35 |
33 34
|
sseldd |
|
| 36 |
5
|
ad2antrr |
|
| 37 |
|
simprl |
|
| 38 |
36 37
|
sseldd |
|
| 39 |
6
|
ad2antrr |
|
| 40 |
|
simprr |
|
| 41 |
39 40
|
sseldd |
|
| 42 |
2 7
|
mndass |
|
| 43 |
32 35 38 41 42
|
syl13anc |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
44
|
2rexbidva |
|
| 46 |
31 45
|
bitr4d |
|
| 47 |
46
|
rexbidva |
|
| 48 |
19 47
|
bitr4d |
|
| 49 |
2 1
|
lsmssv |
|
| 50 |
3 4 5 49
|
syl3anc |
|
| 51 |
2 7 1
|
lsmelvalx |
|
| 52 |
3 50 6 51
|
syl3anc |
|
| 53 |
2 1
|
lsmssv |
|
| 54 |
3 5 6 53
|
syl3anc |
|
| 55 |
2 7 1
|
lsmelvalx |
|
| 56 |
3 4 54 55
|
syl3anc |
|
| 57 |
48 52 56
|
3bitr4d |
|
| 58 |
57
|
eqrdv |
|