Step |
Hyp |
Ref |
Expression |
1 |
|
elgrplsmsn.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
elgrplsmsn.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
elgrplsmsn.3 |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
4 |
|
elgrplsmsn.4 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
5 |
|
elgrplsmsn.5 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
6 |
|
elgrplsmsn.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐵 ) |
8 |
1 2 3
|
lsmelvalx |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ∧ { 𝑋 } ⊆ 𝐵 ) → ( 𝑍 ∈ ( 𝐴 ⊕ { 𝑋 } ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ) ) |
9 |
4 5 7 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐴 ⊕ { 𝑋 } ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑋 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝑍 = ( 𝑥 + 𝑦 ) ↔ 𝑍 = ( 𝑥 + 𝑋 ) ) ) |
12 |
11
|
rexsng |
⊢ ( 𝑋 ∈ 𝐵 → ( ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ↔ 𝑍 = ( 𝑥 + 𝑋 ) ) ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ↔ 𝑍 = ( 𝑥 + 𝑋 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑍 = ( 𝑥 + 𝑋 ) ) ) |
15 |
9 14
|
bitrd |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐴 ⊕ { 𝑋 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑍 = ( 𝑥 + 𝑋 ) ) ) |