Metamath Proof Explorer


Theorem elgrplsmsn

Description: Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses elgrplsmsn.1 𝐵 = ( Base ‘ 𝐺 )
elgrplsmsn.2 + = ( +g𝐺 )
elgrplsmsn.3 = ( LSSum ‘ 𝐺 )
elgrplsmsn.4 ( 𝜑𝐺𝑉 )
elgrplsmsn.5 ( 𝜑𝐴𝐵 )
elgrplsmsn.6 ( 𝜑𝑋𝐵 )
Assertion elgrplsmsn ( 𝜑 → ( 𝑍 ∈ ( 𝐴 { 𝑋 } ) ↔ ∃ 𝑥𝐴 𝑍 = ( 𝑥 + 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 elgrplsmsn.1 𝐵 = ( Base ‘ 𝐺 )
2 elgrplsmsn.2 + = ( +g𝐺 )
3 elgrplsmsn.3 = ( LSSum ‘ 𝐺 )
4 elgrplsmsn.4 ( 𝜑𝐺𝑉 )
5 elgrplsmsn.5 ( 𝜑𝐴𝐵 )
6 elgrplsmsn.6 ( 𝜑𝑋𝐵 )
7 6 snssd ( 𝜑 → { 𝑋 } ⊆ 𝐵 )
8 1 2 3 lsmelvalx ( ( 𝐺𝑉𝐴𝐵 ∧ { 𝑋 } ⊆ 𝐵 ) → ( 𝑍 ∈ ( 𝐴 { 𝑋 } ) ↔ ∃ 𝑥𝐴𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ) )
9 4 5 7 8 syl3anc ( 𝜑 → ( 𝑍 ∈ ( 𝐴 { 𝑋 } ) ↔ ∃ 𝑥𝐴𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ) )
10 oveq2 ( 𝑦 = 𝑋 → ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑋 ) )
11 10 eqeq2d ( 𝑦 = 𝑋 → ( 𝑍 = ( 𝑥 + 𝑦 ) ↔ 𝑍 = ( 𝑥 + 𝑋 ) ) )
12 11 rexsng ( 𝑋𝐵 → ( ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ↔ 𝑍 = ( 𝑥 + 𝑋 ) ) )
13 6 12 syl ( 𝜑 → ( ∃ 𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ↔ 𝑍 = ( 𝑥 + 𝑋 ) ) )
14 13 rexbidv ( 𝜑 → ( ∃ 𝑥𝐴𝑦 ∈ { 𝑋 } 𝑍 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑥𝐴 𝑍 = ( 𝑥 + 𝑋 ) ) )
15 9 14 bitrd ( 𝜑 → ( 𝑍 ∈ ( 𝐴 { 𝑋 } ) ↔ ∃ 𝑥𝐴 𝑍 = ( 𝑥 + 𝑋 ) ) )