Step |
Hyp |
Ref |
Expression |
1 |
|
elgrplsmsn.1 |
|- B = ( Base ` G ) |
2 |
|
elgrplsmsn.2 |
|- .+ = ( +g ` G ) |
3 |
|
elgrplsmsn.3 |
|- .(+) = ( LSSum ` G ) |
4 |
|
elgrplsmsn.4 |
|- ( ph -> G e. V ) |
5 |
|
elgrplsmsn.5 |
|- ( ph -> A C_ B ) |
6 |
|
elgrplsmsn.6 |
|- ( ph -> X e. B ) |
7 |
6
|
snssd |
|- ( ph -> { X } C_ B ) |
8 |
1 2 3
|
lsmelvalx |
|- ( ( G e. V /\ A C_ B /\ { X } C_ B ) -> ( Z e. ( A .(+) { X } ) <-> E. x e. A E. y e. { X } Z = ( x .+ y ) ) ) |
9 |
4 5 7 8
|
syl3anc |
|- ( ph -> ( Z e. ( A .(+) { X } ) <-> E. x e. A E. y e. { X } Z = ( x .+ y ) ) ) |
10 |
|
oveq2 |
|- ( y = X -> ( x .+ y ) = ( x .+ X ) ) |
11 |
10
|
eqeq2d |
|- ( y = X -> ( Z = ( x .+ y ) <-> Z = ( x .+ X ) ) ) |
12 |
11
|
rexsng |
|- ( X e. B -> ( E. y e. { X } Z = ( x .+ y ) <-> Z = ( x .+ X ) ) ) |
13 |
6 12
|
syl |
|- ( ph -> ( E. y e. { X } Z = ( x .+ y ) <-> Z = ( x .+ X ) ) ) |
14 |
13
|
rexbidv |
|- ( ph -> ( E. x e. A E. y e. { X } Z = ( x .+ y ) <-> E. x e. A Z = ( x .+ X ) ) ) |
15 |
9 14
|
bitrd |
|- ( ph -> ( Z e. ( A .(+) { X } ) <-> E. x e. A Z = ( x .+ X ) ) ) |