| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsnorb.1 |
|- B = ( Base ` G ) |
| 2 |
|
lsmsnorb.2 |
|- .+ = ( +g ` G ) |
| 3 |
|
lsmsnorb.3 |
|- .(+) = ( LSSum ` G ) |
| 4 |
|
lsmsnorb.4 |
|- .~ = { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) } |
| 5 |
|
lsmsnorb.5 |
|- ( ph -> G e. Mnd ) |
| 6 |
|
lsmsnorb.6 |
|- ( ph -> A C_ B ) |
| 7 |
|
lsmsnorb.7 |
|- ( ph -> X e. B ) |
| 8 |
7
|
snssd |
|- ( ph -> { X } C_ B ) |
| 9 |
1 3
|
lsmssv |
|- ( ( G e. Mnd /\ A C_ B /\ { X } C_ B ) -> ( A .(+) { X } ) C_ B ) |
| 10 |
5 6 8 9
|
syl3anc |
|- ( ph -> ( A .(+) { X } ) C_ B ) |
| 11 |
10
|
sselda |
|- ( ( ph /\ k e. ( A .(+) { X } ) ) -> k e. B ) |
| 12 |
|
df-ec |
|- [ X ] .~ = ( .~ " { X } ) |
| 13 |
|
imassrn |
|- ( .~ " { X } ) C_ ran .~ |
| 14 |
4
|
rneqi |
|- ran .~ = ran { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) } |
| 15 |
|
rnopab |
|- ran { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) } = { y | E. x ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) } |
| 16 |
|
vex |
|- x e. _V |
| 17 |
|
vex |
|- y e. _V |
| 18 |
16 17
|
prss |
|- ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) |
| 19 |
18
|
biimpri |
|- ( { x , y } C_ B -> ( x e. B /\ y e. B ) ) |
| 20 |
19
|
simprd |
|- ( { x , y } C_ B -> y e. B ) |
| 21 |
20
|
adantr |
|- ( ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) -> y e. B ) |
| 22 |
21
|
exlimiv |
|- ( E. x ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) -> y e. B ) |
| 23 |
22
|
abssi |
|- { y | E. x ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) } C_ B |
| 24 |
15 23
|
eqsstri |
|- ran { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( g .+ x ) = y ) } C_ B |
| 25 |
14 24
|
eqsstri |
|- ran .~ C_ B |
| 26 |
13 25
|
sstri |
|- ( .~ " { X } ) C_ B |
| 27 |
26
|
a1i |
|- ( ph -> ( .~ " { X } ) C_ B ) |
| 28 |
12 27
|
eqsstrid |
|- ( ph -> [ X ] .~ C_ B ) |
| 29 |
28
|
sselda |
|- ( ( ph /\ k e. [ X ] .~ ) -> k e. B ) |
| 30 |
4
|
gaorb |
|- ( X .~ k <-> ( X e. B /\ k e. B /\ E. h e. A ( h .+ X ) = k ) ) |
| 31 |
7
|
anim1i |
|- ( ( ph /\ k e. B ) -> ( X e. B /\ k e. B ) ) |
| 32 |
31
|
biantrurd |
|- ( ( ph /\ k e. B ) -> ( E. h e. A ( h .+ X ) = k <-> ( ( X e. B /\ k e. B ) /\ E. h e. A ( h .+ X ) = k ) ) ) |
| 33 |
|
df-3an |
|- ( ( X e. B /\ k e. B /\ E. h e. A ( h .+ X ) = k ) <-> ( ( X e. B /\ k e. B ) /\ E. h e. A ( h .+ X ) = k ) ) |
| 34 |
32 33
|
bitr4di |
|- ( ( ph /\ k e. B ) -> ( E. h e. A ( h .+ X ) = k <-> ( X e. B /\ k e. B /\ E. h e. A ( h .+ X ) = k ) ) ) |
| 35 |
30 34
|
bitr4id |
|- ( ( ph /\ k e. B ) -> ( X .~ k <-> E. h e. A ( h .+ X ) = k ) ) |
| 36 |
|
vex |
|- k e. _V |
| 37 |
7
|
adantr |
|- ( ( ph /\ k e. B ) -> X e. B ) |
| 38 |
|
elecg |
|- ( ( k e. _V /\ X e. B ) -> ( k e. [ X ] .~ <-> X .~ k ) ) |
| 39 |
36 37 38
|
sylancr |
|- ( ( ph /\ k e. B ) -> ( k e. [ X ] .~ <-> X .~ k ) ) |
| 40 |
5
|
adantr |
|- ( ( ph /\ k e. B ) -> G e. Mnd ) |
| 41 |
6
|
adantr |
|- ( ( ph /\ k e. B ) -> A C_ B ) |
| 42 |
1 2 3 40 41 37
|
elgrplsmsn |
|- ( ( ph /\ k e. B ) -> ( k e. ( A .(+) { X } ) <-> E. h e. A k = ( h .+ X ) ) ) |
| 43 |
|
eqcom |
|- ( k = ( h .+ X ) <-> ( h .+ X ) = k ) |
| 44 |
43
|
rexbii |
|- ( E. h e. A k = ( h .+ X ) <-> E. h e. A ( h .+ X ) = k ) |
| 45 |
42 44
|
bitrdi |
|- ( ( ph /\ k e. B ) -> ( k e. ( A .(+) { X } ) <-> E. h e. A ( h .+ X ) = k ) ) |
| 46 |
35 39 45
|
3bitr4rd |
|- ( ( ph /\ k e. B ) -> ( k e. ( A .(+) { X } ) <-> k e. [ X ] .~ ) ) |
| 47 |
11 29 46
|
eqrdav |
|- ( ph -> ( A .(+) { X } ) = [ X ] .~ ) |