Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsnorb2.1 |
|- B = ( Base ` G ) |
2 |
|
lsmsnorb2.2 |
|- .+ = ( +g ` G ) |
3 |
|
lsmsnorb2.3 |
|- .(+) = ( LSSum ` G ) |
4 |
|
lsmsnorb2.4 |
|- .~ = { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( x .+ g ) = y ) } |
5 |
|
lsmsnorb2.5 |
|- ( ph -> G e. Mnd ) |
6 |
|
lsmsnorb2.6 |
|- ( ph -> A C_ B ) |
7 |
|
lsmsnorb2.7 |
|- ( ph -> X e. B ) |
8 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
9 |
8 3
|
oppglsm |
|- ( A ( LSSum ` ( oppG ` G ) ) { X } ) = ( { X } .(+) A ) |
10 |
8 1
|
oppgbas |
|- B = ( Base ` ( oppG ` G ) ) |
11 |
|
eqid |
|- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
12 |
|
eqid |
|- ( LSSum ` ( oppG ` G ) ) = ( LSSum ` ( oppG ` G ) ) |
13 |
2 8 11
|
oppgplus |
|- ( g ( +g ` ( oppG ` G ) ) x ) = ( x .+ g ) |
14 |
13
|
eqeq1i |
|- ( ( g ( +g ` ( oppG ` G ) ) x ) = y <-> ( x .+ g ) = y ) |
15 |
14
|
rexbii |
|- ( E. g e. A ( g ( +g ` ( oppG ` G ) ) x ) = y <-> E. g e. A ( x .+ g ) = y ) |
16 |
15
|
anbi2i |
|- ( ( { x , y } C_ B /\ E. g e. A ( g ( +g ` ( oppG ` G ) ) x ) = y ) <-> ( { x , y } C_ B /\ E. g e. A ( x .+ g ) = y ) ) |
17 |
16
|
opabbii |
|- { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( g ( +g ` ( oppG ` G ) ) x ) = y ) } = { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( x .+ g ) = y ) } |
18 |
4 17
|
eqtr4i |
|- .~ = { <. x , y >. | ( { x , y } C_ B /\ E. g e. A ( g ( +g ` ( oppG ` G ) ) x ) = y ) } |
19 |
8
|
oppgmnd |
|- ( G e. Mnd -> ( oppG ` G ) e. Mnd ) |
20 |
5 19
|
syl |
|- ( ph -> ( oppG ` G ) e. Mnd ) |
21 |
10 11 12 18 20 6 7
|
lsmsnorb |
|- ( ph -> ( A ( LSSum ` ( oppG ` G ) ) { X } ) = [ X ] .~ ) |
22 |
9 21
|
eqtr3id |
|- ( ph -> ( { X } .(+) A ) = [ X ] .~ ) |