| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppgbas.1 |
|- O = ( oppG ` R ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
1 2
|
oppgbas |
|- ( Base ` R ) = ( Base ` O ) |
| 4 |
3
|
a1i |
|- ( R e. Mnd -> ( Base ` R ) = ( Base ` O ) ) |
| 5 |
|
eqidd |
|- ( R e. Mnd -> ( +g ` O ) = ( +g ` O ) ) |
| 6 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 7 |
|
eqid |
|- ( +g ` O ) = ( +g ` O ) |
| 8 |
6 1 7
|
oppgplus |
|- ( x ( +g ` O ) y ) = ( y ( +g ` R ) x ) |
| 9 |
2 6
|
mndcl |
|- ( ( R e. Mnd /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( y ( +g ` R ) x ) e. ( Base ` R ) ) |
| 10 |
9
|
3com23 |
|- ( ( R e. Mnd /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( y ( +g ` R ) x ) e. ( Base ` R ) ) |
| 11 |
8 10
|
eqeltrid |
|- ( ( R e. Mnd /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` O ) y ) e. ( Base ` R ) ) |
| 12 |
|
simpl |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> R e. Mnd ) |
| 13 |
|
simpr3 |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> z e. ( Base ` R ) ) |
| 14 |
|
simpr2 |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> y e. ( Base ` R ) ) |
| 15 |
|
simpr1 |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> x e. ( Base ` R ) ) |
| 16 |
2 6
|
mndass |
|- ( ( R e. Mnd /\ ( z e. ( Base ` R ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) ) -> ( ( z ( +g ` R ) y ) ( +g ` R ) x ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) ) |
| 17 |
12 13 14 15 16
|
syl13anc |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( z ( +g ` R ) y ) ( +g ` R ) x ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) ) |
| 18 |
17
|
eqcomd |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( z ( +g ` R ) ( y ( +g ` R ) x ) ) = ( ( z ( +g ` R ) y ) ( +g ` R ) x ) ) |
| 19 |
8
|
oveq1i |
|- ( ( x ( +g ` O ) y ) ( +g ` O ) z ) = ( ( y ( +g ` R ) x ) ( +g ` O ) z ) |
| 20 |
6 1 7
|
oppgplus |
|- ( ( y ( +g ` R ) x ) ( +g ` O ) z ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) |
| 21 |
19 20
|
eqtri |
|- ( ( x ( +g ` O ) y ) ( +g ` O ) z ) = ( z ( +g ` R ) ( y ( +g ` R ) x ) ) |
| 22 |
6 1 7
|
oppgplus |
|- ( y ( +g ` O ) z ) = ( z ( +g ` R ) y ) |
| 23 |
22
|
oveq2i |
|- ( x ( +g ` O ) ( y ( +g ` O ) z ) ) = ( x ( +g ` O ) ( z ( +g ` R ) y ) ) |
| 24 |
6 1 7
|
oppgplus |
|- ( x ( +g ` O ) ( z ( +g ` R ) y ) ) = ( ( z ( +g ` R ) y ) ( +g ` R ) x ) |
| 25 |
23 24
|
eqtri |
|- ( x ( +g ` O ) ( y ( +g ` O ) z ) ) = ( ( z ( +g ` R ) y ) ( +g ` R ) x ) |
| 26 |
18 21 25
|
3eqtr4g |
|- ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` O ) y ) ( +g ` O ) z ) = ( x ( +g ` O ) ( y ( +g ` O ) z ) ) ) |
| 27 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 28 |
2 27
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 29 |
6 1 7
|
oppgplus |
|- ( ( 0g ` R ) ( +g ` O ) x ) = ( x ( +g ` R ) ( 0g ` R ) ) |
| 30 |
2 6 27
|
mndrid |
|- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( x ( +g ` R ) ( 0g ` R ) ) = x ) |
| 31 |
29 30
|
eqtrid |
|- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` O ) x ) = x ) |
| 32 |
6 1 7
|
oppgplus |
|- ( x ( +g ` O ) ( 0g ` R ) ) = ( ( 0g ` R ) ( +g ` R ) x ) |
| 33 |
2 6 27
|
mndlid |
|- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) x ) = x ) |
| 34 |
32 33
|
eqtrid |
|- ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( x ( +g ` O ) ( 0g ` R ) ) = x ) |
| 35 |
4 5 11 26 28 31 34
|
ismndd |
|- ( R e. Mnd -> O e. Mnd ) |