Metamath Proof Explorer


Theorem oppgmnd

Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypothesis oppgbas.1 O = opp 𝑔 R
Assertion oppgmnd R Mnd O Mnd

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 eqid Base R = Base R
3 1 2 oppgbas Base R = Base O
4 3 a1i R Mnd Base R = Base O
5 eqidd R Mnd + O = + O
6 eqid + R = + R
7 eqid + O = + O
8 6 1 7 oppgplus x + O y = y + R x
9 2 6 mndcl R Mnd y Base R x Base R y + R x Base R
10 9 3com23 R Mnd x Base R y Base R y + R x Base R
11 8 10 eqeltrid R Mnd x Base R y Base R x + O y Base R
12 simpl R Mnd x Base R y Base R z Base R R Mnd
13 simpr3 R Mnd x Base R y Base R z Base R z Base R
14 simpr2 R Mnd x Base R y Base R z Base R y Base R
15 simpr1 R Mnd x Base R y Base R z Base R x Base R
16 2 6 mndass R Mnd z Base R y Base R x Base R z + R y + R x = z + R y + R x
17 12 13 14 15 16 syl13anc R Mnd x Base R y Base R z Base R z + R y + R x = z + R y + R x
18 17 eqcomd R Mnd x Base R y Base R z Base R z + R y + R x = z + R y + R x
19 8 oveq1i x + O y + O z = y + R x + O z
20 6 1 7 oppgplus y + R x + O z = z + R y + R x
21 19 20 eqtri x + O y + O z = z + R y + R x
22 6 1 7 oppgplus y + O z = z + R y
23 22 oveq2i x + O y + O z = x + O z + R y
24 6 1 7 oppgplus x + O z + R y = z + R y + R x
25 23 24 eqtri x + O y + O z = z + R y + R x
26 18 21 25 3eqtr4g R Mnd x Base R y Base R z Base R x + O y + O z = x + O y + O z
27 eqid 0 R = 0 R
28 2 27 mndidcl R Mnd 0 R Base R
29 6 1 7 oppgplus 0 R + O x = x + R 0 R
30 2 6 27 mndrid R Mnd x Base R x + R 0 R = x
31 29 30 syl5eq R Mnd x Base R 0 R + O x = x
32 6 1 7 oppgplus x + O 0 R = 0 R + R x
33 2 6 27 mndlid R Mnd x Base R 0 R + R x = x
34 32 33 syl5eq R Mnd x Base R x + O 0 R = x
35 4 5 11 26 28 31 34 ismndd R Mnd O Mnd