| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlmulssprm.1 |
|- .X. = ( LSSum ` ( mulGrp ` R ) ) |
| 2 |
|
idlmulssprm.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
idlmulssprm.3 |
|- ( ph -> P e. ( PrmIdeal ` R ) ) |
| 4 |
|
idlmulssprm.4 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 5 |
|
idlmulssprm.5 |
|- ( ph -> J e. ( LIdeal ` R ) ) |
| 6 |
|
idlmulssprm.6 |
|- ( ph -> ( I .X. J ) C_ P ) |
| 7 |
4 5
|
jca |
|- ( ph -> ( I e. ( LIdeal ` R ) /\ J e. ( LIdeal ` R ) ) ) |
| 8 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( I .X. J ) C_ P ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 12 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 13 |
9 12
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ ( Base ` R ) ) |
| 14 |
4 13
|
syl |
|- ( ph -> I C_ ( Base ` R ) ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> I C_ ( Base ` R ) ) |
| 16 |
9 12
|
lidlss |
|- ( J e. ( LIdeal ` R ) -> J C_ ( Base ` R ) ) |
| 17 |
5 16
|
syl |
|- ( ph -> J C_ ( Base ` R ) ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> J C_ ( Base ` R ) ) |
| 19 |
|
simplr |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> x e. I ) |
| 20 |
|
simpr |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> y e. J ) |
| 21 |
9 10 11 1 15 18 19 20
|
elringlsmd |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( x ( .r ` R ) y ) e. ( I .X. J ) ) |
| 22 |
8 21
|
sseldd |
|- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( x ( .r ` R ) y ) e. P ) |
| 23 |
22
|
anasss |
|- ( ( ph /\ ( x e. I /\ y e. J ) ) -> ( x ( .r ` R ) y ) e. P ) |
| 24 |
23
|
ralrimivva |
|- ( ph -> A. x e. I A. y e. J ( x ( .r ` R ) y ) e. P ) |
| 25 |
9 10
|
prmidl |
|- ( ( ( ( R e. Ring /\ P e. ( PrmIdeal ` R ) ) /\ ( I e. ( LIdeal ` R ) /\ J e. ( LIdeal ` R ) ) ) /\ A. x e. I A. y e. J ( x ( .r ` R ) y ) e. P ) -> ( I C_ P \/ J C_ P ) ) |
| 26 |
2 3 7 24 25
|
syl1111anc |
|- ( ph -> ( I C_ P \/ J C_ P ) ) |