| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsidom.1 |
|
| 2 |
|
crngring |
|
| 3 |
2
|
ad2antrr |
|
| 4 |
|
simplr |
|
| 5 |
|
simpr |
|
| 6 |
5
|
oveq2d |
|
| 7 |
6
|
oveq2d |
|
| 8 |
1 7
|
eqtrid |
|
| 9 |
8
|
fveq2d |
|
| 10 |
|
ringgrp |
|
| 11 |
2 10
|
syl |
|
| 12 |
11
|
ad3antrrr |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
qustriv |
|
| 16 |
12 15
|
syl |
|
| 17 |
9 16
|
eqtrd |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
fvex |
|
| 20 |
|
hashsng |
|
| 21 |
19 20
|
ax-mp |
|
| 22 |
18 21
|
eqtrdi |
|
| 23 |
|
1red |
|
| 24 |
|
isidom |
|
| 25 |
24
|
simprbi |
|
| 26 |
|
domnnzr |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
|
eqid |
|
| 30 |
29
|
isnzr2hash |
|
| 31 |
30
|
simprbi |
|
| 32 |
28 31
|
syl |
|
| 33 |
23 32
|
gtned |
|
| 34 |
33
|
neneqd |
|
| 35 |
22 34
|
pm2.65da |
|
| 36 |
35
|
neqned |
|
| 37 |
25
|
ad4antlr |
|
| 38 |
|
ovex |
|
| 39 |
38
|
ecelqsi |
|
| 40 |
39
|
ad3antlr |
|
| 41 |
|
simp-5l |
|
| 42 |
1
|
a1i |
|
| 43 |
|
eqidd |
|
| 44 |
|
ovexd |
|
| 45 |
|
id |
|
| 46 |
42 43 44 45
|
qusbas |
|
| 47 |
41 46
|
syl |
|
| 48 |
40 47
|
eleqtrd |
|
| 49 |
38
|
ecelqsi |
|
| 50 |
49
|
ad2antlr |
|
| 51 |
50 47
|
eleqtrd |
|
| 52 |
41 2 10
|
3syl |
|
| 53 |
|
eqid |
|
| 54 |
53
|
lidlsubg |
|
| 55 |
2 54
|
sylan |
|
| 56 |
55
|
ad4antr |
|
| 57 |
|
simpr |
|
| 58 |
|
eqid |
|
| 59 |
58
|
eqg0el |
|
| 60 |
59
|
biimpar |
|
| 61 |
52 56 57 60
|
syl21anc |
|
| 62 |
1
|
a1i |
|
| 63 |
|
eqidd |
|
| 64 |
13 58
|
eqger |
|
| 65 |
55 64
|
syl |
|
| 66 |
|
simpl |
|
| 67 |
53
|
crng2idl |
|
| 68 |
67
|
eleq2d |
|
| 69 |
68
|
biimpa |
|
| 70 |
|
eqid |
|
| 71 |
|
eqid |
|
| 72 |
13 58 70 71
|
2idlcpbl |
|
| 73 |
2 69 72
|
syl2an2r |
|
| 74 |
2
|
ad2antrr |
|
| 75 |
|
simprl |
|
| 76 |
|
simprr |
|
| 77 |
13 71
|
ringcl |
|
| 78 |
74 75 76 77
|
syl3anc |
|
| 79 |
|
eqid |
|
| 80 |
62 63 65 66 73 78 71 79
|
qusmulval |
|
| 81 |
80
|
ad5ant134 |
|
| 82 |
|
lidlnsg |
|
| 83 |
2 82
|
sylan |
|
| 84 |
|
eqid |
|
| 85 |
1 84
|
qus0 |
|
| 86 |
83 85
|
syl |
|
| 87 |
13 58 84
|
eqgid |
|
| 88 |
55 87
|
syl |
|
| 89 |
86 88
|
eqtr3d |
|
| 90 |
89
|
ad4antr |
|
| 91 |
61 81 90
|
3eqtr4d |
|
| 92 |
|
eqid |
|
| 93 |
29 79 92
|
domneq0 |
|
| 94 |
93
|
biimpa |
|
| 95 |
37 48 51 91 94
|
syl31anc |
|
| 96 |
89
|
eqeq2d |
|
| 97 |
66 2 10
|
3syl |
|
| 98 |
58
|
eqg0el |
|
| 99 |
97 55 98
|
syl2anc |
|
| 100 |
96 99
|
bitrd |
|
| 101 |
89
|
eqeq2d |
|
| 102 |
58
|
eqg0el |
|
| 103 |
97 55 102
|
syl2anc |
|
| 104 |
101 103
|
bitrd |
|
| 105 |
100 104
|
orbi12d |
|
| 106 |
105
|
ad4antr |
|
| 107 |
95 106
|
mpbid |
|
| 108 |
107
|
ex |
|
| 109 |
108
|
anasss |
|
| 110 |
109
|
ralrimivva |
|
| 111 |
13 71
|
prmidl2 |
|
| 112 |
3 4 36 110 111
|
syl22anc |
|