Step |
Hyp |
Ref |
Expression |
1 |
|
qsidom.1 |
|
2 |
|
crngring |
|
3 |
2
|
ad2antrr |
|
4 |
|
simplr |
|
5 |
|
simpr |
|
6 |
5
|
oveq2d |
|
7 |
6
|
oveq2d |
|
8 |
1 7
|
syl5eq |
|
9 |
8
|
fveq2d |
|
10 |
|
ringgrp |
|
11 |
2 10
|
syl |
|
12 |
11
|
ad3antrrr |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
qustriv |
|
16 |
12 15
|
syl |
|
17 |
9 16
|
eqtrd |
|
18 |
17
|
fveq2d |
|
19 |
|
fvex |
|
20 |
|
hashsng |
|
21 |
19 20
|
ax-mp |
|
22 |
18 21
|
eqtrdi |
|
23 |
|
1red |
|
24 |
|
isidom |
|
25 |
24
|
simprbi |
|
26 |
|
domnnzr |
|
27 |
25 26
|
syl |
|
28 |
27
|
ad2antlr |
|
29 |
|
eqid |
|
30 |
29
|
isnzr2hash |
|
31 |
30
|
simprbi |
|
32 |
28 31
|
syl |
|
33 |
23 32
|
gtned |
|
34 |
33
|
neneqd |
|
35 |
22 34
|
pm2.65da |
|
36 |
35
|
neqned |
|
37 |
25
|
ad4antlr |
|
38 |
|
ovex |
|
39 |
38
|
ecelqsi |
|
40 |
39
|
ad3antlr |
|
41 |
|
simp-5l |
|
42 |
1
|
a1i |
|
43 |
|
eqidd |
|
44 |
|
ovexd |
|
45 |
|
id |
|
46 |
42 43 44 45
|
qusbas |
|
47 |
41 46
|
syl |
|
48 |
40 47
|
eleqtrd |
|
49 |
38
|
ecelqsi |
|
50 |
49
|
ad2antlr |
|
51 |
50 47
|
eleqtrd |
|
52 |
41 2 10
|
3syl |
|
53 |
|
eqid |
|
54 |
53
|
lidlsubg |
|
55 |
2 54
|
sylan |
|
56 |
55
|
ad4antr |
|
57 |
|
simpr |
|
58 |
|
eqid |
|
59 |
58
|
eqg0el |
|
60 |
59
|
biimpar |
|
61 |
52 56 57 60
|
syl21anc |
|
62 |
1
|
a1i |
|
63 |
|
eqidd |
|
64 |
13 58
|
eqger |
|
65 |
55 64
|
syl |
|
66 |
|
simpl |
|
67 |
53
|
crng2idl |
|
68 |
67
|
eleq2d |
|
69 |
68
|
biimpa |
|
70 |
|
eqid |
|
71 |
|
eqid |
|
72 |
13 58 70 71
|
2idlcpbl |
|
73 |
2 69 72
|
syl2an2r |
|
74 |
2
|
ad2antrr |
|
75 |
|
simprl |
|
76 |
|
simprr |
|
77 |
13 71
|
ringcl |
|
78 |
74 75 76 77
|
syl3anc |
|
79 |
|
eqid |
|
80 |
62 63 65 66 73 78 71 79
|
qusmulval |
|
81 |
80
|
ad5ant134 |
|
82 |
|
lidlnsg |
|
83 |
2 82
|
sylan |
|
84 |
|
eqid |
|
85 |
1 84
|
qus0 |
|
86 |
83 85
|
syl |
|
87 |
13 58 84
|
eqgid |
|
88 |
55 87
|
syl |
|
89 |
86 88
|
eqtr3d |
|
90 |
89
|
ad4antr |
|
91 |
61 81 90
|
3eqtr4d |
|
92 |
|
eqid |
|
93 |
29 79 92
|
domneq0 |
|
94 |
93
|
biimpa |
|
95 |
37 48 51 91 94
|
syl31anc |
|
96 |
89
|
eqeq2d |
|
97 |
66 2 10
|
3syl |
|
98 |
58
|
eqg0el |
|
99 |
97 55 98
|
syl2anc |
|
100 |
96 99
|
bitrd |
|
101 |
89
|
eqeq2d |
|
102 |
58
|
eqg0el |
|
103 |
97 55 102
|
syl2anc |
|
104 |
101 103
|
bitrd |
|
105 |
100 104
|
orbi12d |
|
106 |
105
|
ad4antr |
|
107 |
95 106
|
mpbid |
|
108 |
107
|
ex |
|
109 |
108
|
anasss |
|
110 |
109
|
ralrimivva |
|
111 |
13 71
|
prmidl2 |
Could not format ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( I =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) ) -> I e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( I =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. I -> ( x e. I \/ y e. I ) ) ) ) -> I e. ( PrmIdeal ` R ) ) with typecode |- |
112 |
3 4 36 110 111
|
syl22anc |
Could not format ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( R e. CRing /\ I e. ( LIdeal ` R ) ) /\ Q e. IDomn ) -> I e. ( PrmIdeal ` R ) ) with typecode |- |