| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qsidom.1 |
|
| 2 |
|
crngring |
|
| 3 |
|
prmidlidl |
|
| 4 |
2 3
|
sylan |
|
| 5 |
|
eqid |
|
| 6 |
1 5
|
quscrng |
|
| 7 |
4 6
|
syldan |
|
| 8 |
5
|
crng2idl |
|
| 9 |
8
|
eleq2d |
|
| 10 |
9
|
biimpa |
|
| 11 |
4 10
|
syldan |
|
| 12 |
|
eqid |
|
| 13 |
1 12
|
qusring |
|
| 14 |
2 11 13
|
syl2an2r |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16
|
ring0cl |
|
| 18 |
14 17
|
syl |
|
| 19 |
18
|
snssd |
|
| 20 |
|
lidlnsg |
|
| 21 |
2 20
|
sylan |
|
| 22 |
|
eqid |
|
| 23 |
1 22
|
qus0 |
|
| 24 |
21 23
|
syl |
|
| 25 |
5
|
lidlsubg |
|
| 26 |
2 25
|
sylan |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
27 28 22
|
eqgid |
|
| 30 |
26 29
|
syl |
|
| 31 |
24 30
|
eqtr3d |
|
| 32 |
4 31
|
syldan |
|
| 33 |
32
|
sneqd |
|
| 34 |
|
eqid |
|
| 35 |
27 34
|
isprmidlc |
|
| 36 |
35
|
biimpa |
|
| 37 |
36
|
simp2d |
|
| 38 |
|
ringgrp |
|
| 39 |
2 38
|
syl |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
2
|
ad2antrr |
|
| 42 |
4
|
adantr |
|
| 43 |
41 42 25
|
syl2anc |
|
| 44 |
|
simpr |
|
| 45 |
27 1
|
qustrivr |
|
| 46 |
40 43 44 45
|
syl3anc |
|
| 47 |
37 46
|
mteqand |
|
| 48 |
47
|
necomd |
|
| 49 |
33 48
|
eqnetrd |
|
| 50 |
|
pssdifn0 |
|
| 51 |
19 49 50
|
syl2anc |
|
| 52 |
|
n0 |
|
| 53 |
51 52
|
sylib |
|
| 54 |
16 15
|
ringelnzr |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
exlimdv |
|
| 57 |
14 53 56
|
sylc |
|
| 58 |
36
|
simp3d |
|
| 59 |
58
|
ad7antr |
|
| 60 |
|
simp-4r |
|
| 61 |
|
simplr |
|
| 62 |
|
simp-8l |
|
| 63 |
62 39
|
syl |
|
| 64 |
4
|
ad7antr |
|
| 65 |
62 64 26
|
syl2anc |
|
| 66 |
1
|
a1i |
|
| 67 |
|
eqidd |
|
| 68 |
27 28
|
eqger |
|
| 69 |
26 68
|
syl |
|
| 70 |
|
simpl |
|
| 71 |
27 28 12 34
|
2idlcpbl |
|
| 72 |
2 10 71
|
syl2an2r |
|
| 73 |
2
|
ad2antrr |
|
| 74 |
|
simprl |
|
| 75 |
|
simprr |
|
| 76 |
27 34
|
ringcl |
|
| 77 |
73 74 75 76
|
syl3anc |
|
| 78 |
|
eqid |
|
| 79 |
66 67 69 70 72 77 34 78
|
qusmulval |
|
| 80 |
62 64 60 61 79
|
syl211anc |
|
| 81 |
|
simpr |
|
| 82 |
81
|
ad4antr |
|
| 83 |
|
simpllr |
|
| 84 |
|
simpr |
|
| 85 |
83 84
|
oveq12d |
|
| 86 |
62 64 31
|
syl2anc |
|
| 87 |
82 85 86
|
3eqtr3d |
|
| 88 |
80 87
|
eqtr3d |
|
| 89 |
28
|
eqg0el |
|
| 90 |
89
|
biimpa |
|
| 91 |
63 65 88 90
|
syl21anc |
|
| 92 |
|
rsp2 |
|
| 93 |
92
|
impl |
|
| 94 |
93
|
imp |
|
| 95 |
59 60 61 91 94
|
syl1111anc |
|
| 96 |
86
|
eqeq2d |
|
| 97 |
83
|
eqeq1d |
|
| 98 |
28
|
eqg0el |
|
| 99 |
63 65 98
|
syl2anc |
|
| 100 |
96 97 99
|
3bitrrd |
|
| 101 |
86
|
eqeq2d |
|
| 102 |
84
|
eqeq1d |
|
| 103 |
28
|
eqg0el |
|
| 104 |
63 65 103
|
syl2anc |
|
| 105 |
101 102 104
|
3bitrrd |
|
| 106 |
100 105
|
orbi12d |
|
| 107 |
95 106
|
mpbid |
|
| 108 |
|
simplr |
|
| 109 |
1
|
a1i |
|
| 110 |
|
eqidd |
|
| 111 |
|
ovexd |
|
| 112 |
|
id |
|
| 113 |
109 110 111 112
|
qusbas |
|
| 114 |
113
|
ad4antr |
|
| 115 |
108 114
|
eleqtrrd |
|
| 116 |
115
|
ad2antrr |
|
| 117 |
|
elqsi |
|
| 118 |
116 117
|
syl |
|
| 119 |
107 118
|
r19.29a |
|
| 120 |
|
simpllr |
|
| 121 |
120 114
|
eleqtrrd |
|
| 122 |
|
elqsi |
|
| 123 |
121 122
|
syl |
|
| 124 |
119 123
|
r19.29a |
|
| 125 |
124
|
ex |
|
| 126 |
125
|
anasss |
|
| 127 |
126
|
ralrimivva |
|
| 128 |
15 78 16
|
isdomn |
|
| 129 |
57 127 128
|
sylanbrc |
|
| 130 |
|
isidom |
|
| 131 |
7 129 130
|
sylanbrc |
|