Step |
Hyp |
Ref |
Expression |
1 |
|
qsidom.1 |
|
2 |
|
crngring |
|
3 |
|
prmidlidl |
|
4 |
2 3
|
sylan |
|
5 |
|
eqid |
|
6 |
1 5
|
quscrng |
|
7 |
4 6
|
syldan |
|
8 |
5
|
crng2idl |
|
9 |
8
|
eleq2d |
|
10 |
9
|
biimpa |
|
11 |
4 10
|
syldan |
|
12 |
|
eqid |
|
13 |
1 12
|
qusring |
|
14 |
2 11 13
|
syl2an2r |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 16
|
ring0cl |
|
18 |
14 17
|
syl |
|
19 |
18
|
snssd |
|
20 |
|
lidlnsg |
|
21 |
2 20
|
sylan |
|
22 |
|
eqid |
|
23 |
1 22
|
qus0 |
|
24 |
21 23
|
syl |
|
25 |
5
|
lidlsubg |
|
26 |
2 25
|
sylan |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
27 28 22
|
eqgid |
|
30 |
26 29
|
syl |
|
31 |
24 30
|
eqtr3d |
|
32 |
4 31
|
syldan |
|
33 |
32
|
sneqd |
|
34 |
|
eqid |
|
35 |
27 34
|
isprmidlc |
|
36 |
35
|
biimpa |
|
37 |
36
|
simp2d |
|
38 |
|
ringgrp |
|
39 |
2 38
|
syl |
|
40 |
39
|
ad2antrr |
|
41 |
2
|
ad2antrr |
|
42 |
4
|
adantr |
|
43 |
41 42 25
|
syl2anc |
|
44 |
|
simpr |
|
45 |
27 1
|
qustrivr |
|
46 |
40 43 44 45
|
syl3anc |
|
47 |
37 46
|
mteqand |
|
48 |
47
|
necomd |
|
49 |
33 48
|
eqnetrd |
|
50 |
|
pssdifn0 |
|
51 |
19 49 50
|
syl2anc |
|
52 |
|
n0 |
|
53 |
51 52
|
sylib |
|
54 |
16 15
|
ringelnzr |
|
55 |
54
|
ex |
|
56 |
55
|
exlimdv |
|
57 |
14 53 56
|
sylc |
|
58 |
36
|
simp3d |
|
59 |
58
|
ad7antr |
|
60 |
|
simp-4r |
|
61 |
|
simplr |
|
62 |
|
simp-8l |
|
63 |
62 39
|
syl |
|
64 |
4
|
ad7antr |
|
65 |
62 64 26
|
syl2anc |
|
66 |
1
|
a1i |
|
67 |
|
eqidd |
|
68 |
27 28
|
eqger |
|
69 |
26 68
|
syl |
|
70 |
|
simpl |
|
71 |
27 28 12 34
|
2idlcpbl |
|
72 |
2 10 71
|
syl2an2r |
|
73 |
2
|
ad2antrr |
|
74 |
|
simprl |
|
75 |
|
simprr |
|
76 |
27 34
|
ringcl |
|
77 |
73 74 75 76
|
syl3anc |
|
78 |
|
eqid |
|
79 |
66 67 69 70 72 77 34 78
|
qusmulval |
|
80 |
62 64 60 61 79
|
syl211anc |
|
81 |
|
simpr |
|
82 |
81
|
ad4antr |
|
83 |
|
simpllr |
|
84 |
|
simpr |
|
85 |
83 84
|
oveq12d |
|
86 |
62 64 31
|
syl2anc |
|
87 |
82 85 86
|
3eqtr3d |
|
88 |
80 87
|
eqtr3d |
|
89 |
28
|
eqg0el |
|
90 |
89
|
biimpa |
|
91 |
63 65 88 90
|
syl21anc |
|
92 |
|
rsp2 |
|
93 |
92
|
impl |
|
94 |
93
|
imp |
|
95 |
59 60 61 91 94
|
syl1111anc |
|
96 |
86
|
eqeq2d |
|
97 |
83
|
eqeq1d |
|
98 |
28
|
eqg0el |
|
99 |
63 65 98
|
syl2anc |
|
100 |
96 97 99
|
3bitrrd |
|
101 |
86
|
eqeq2d |
|
102 |
84
|
eqeq1d |
|
103 |
28
|
eqg0el |
|
104 |
63 65 103
|
syl2anc |
|
105 |
101 102 104
|
3bitrrd |
|
106 |
100 105
|
orbi12d |
|
107 |
95 106
|
mpbid |
|
108 |
|
simplr |
|
109 |
1
|
a1i |
|
110 |
|
eqidd |
|
111 |
|
ovexd |
|
112 |
|
id |
|
113 |
109 110 111 112
|
qusbas |
|
114 |
113
|
ad4antr |
|
115 |
108 114
|
eleqtrrd |
|
116 |
115
|
ad2antrr |
|
117 |
|
elqsi |
|
118 |
116 117
|
syl |
|
119 |
107 118
|
r19.29a |
|
120 |
|
simpllr |
|
121 |
120 114
|
eleqtrrd |
|
122 |
|
elqsi |
|
123 |
121 122
|
syl |
|
124 |
119 123
|
r19.29a |
|
125 |
124
|
ex |
|
126 |
125
|
anasss |
|
127 |
126
|
ralrimivva |
|
128 |
15 78 16
|
isdomn |
|
129 |
57 127 128
|
sylanbrc |
|
130 |
|
isidom |
|
131 |
7 129 130
|
sylanbrc |
|