Metamath Proof Explorer


Theorem qsidomlem2

Description: A quotient by a prime ideal is an integral domain. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Hypothesis qsidom.1 Q = R / 𝑠 R ~ QG I
Assertion qsidomlem2 R CRing I PrmIdeal R Q IDomn

Proof

Step Hyp Ref Expression
1 qsidom.1 Q = R / 𝑠 R ~ QG I
2 crngring R CRing R Ring
3 prmidlidl R Ring I PrmIdeal R I LIdeal R
4 2 3 sylan R CRing I PrmIdeal R I LIdeal R
5 eqid LIdeal R = LIdeal R
6 1 5 quscrng R CRing I LIdeal R Q CRing
7 4 6 syldan R CRing I PrmIdeal R Q CRing
8 5 crng2idl R CRing LIdeal R = 2Ideal R
9 8 eleq2d R CRing I LIdeal R I 2Ideal R
10 9 biimpa R CRing I LIdeal R I 2Ideal R
11 4 10 syldan R CRing I PrmIdeal R I 2Ideal R
12 eqid 2Ideal R = 2Ideal R
13 1 12 qusring R Ring I 2Ideal R Q Ring
14 2 11 13 syl2an2r R CRing I PrmIdeal R Q Ring
15 eqid Base Q = Base Q
16 eqid 0 Q = 0 Q
17 15 16 ring0cl Q Ring 0 Q Base Q
18 14 17 syl R CRing I PrmIdeal R 0 Q Base Q
19 18 snssd R CRing I PrmIdeal R 0 Q Base Q
20 lidlnsg R Ring I LIdeal R I NrmSGrp R
21 2 20 sylan R CRing I LIdeal R I NrmSGrp R
22 eqid 0 R = 0 R
23 1 22 qus0 I NrmSGrp R 0 R R ~ QG I = 0 Q
24 21 23 syl R CRing I LIdeal R 0 R R ~ QG I = 0 Q
25 5 lidlsubg R Ring I LIdeal R I SubGrp R
26 2 25 sylan R CRing I LIdeal R I SubGrp R
27 eqid Base R = Base R
28 eqid R ~ QG I = R ~ QG I
29 27 28 22 eqgid I SubGrp R 0 R R ~ QG I = I
30 26 29 syl R CRing I LIdeal R 0 R R ~ QG I = I
31 24 30 eqtr3d R CRing I LIdeal R 0 Q = I
32 4 31 syldan R CRing I PrmIdeal R 0 Q = I
33 32 sneqd R CRing I PrmIdeal R 0 Q = I
34 eqid R = R
35 27 34 isprmidlc R CRing I PrmIdeal R I LIdeal R I Base R x Base R y Base R x R y I x I y I
36 35 biimpa R CRing I PrmIdeal R I LIdeal R I Base R x Base R y Base R x R y I x I y I
37 36 simp2d R CRing I PrmIdeal R I Base R
38 ringgrp R Ring R Grp
39 2 38 syl R CRing R Grp
40 39 ad2antrr R CRing I PrmIdeal R Base Q = I R Grp
41 2 ad2antrr R CRing I PrmIdeal R Base Q = I R Ring
42 4 adantr R CRing I PrmIdeal R Base Q = I I LIdeal R
43 41 42 25 syl2anc R CRing I PrmIdeal R Base Q = I I SubGrp R
44 simpr R CRing I PrmIdeal R Base Q = I Base Q = I
45 27 1 qustrivr R Grp I SubGrp R Base Q = I I = Base R
46 40 43 44 45 syl3anc R CRing I PrmIdeal R Base Q = I I = Base R
47 37 46 mteqand R CRing I PrmIdeal R Base Q I
48 47 necomd R CRing I PrmIdeal R I Base Q
49 33 48 eqnetrd R CRing I PrmIdeal R 0 Q Base Q
50 pssdifn0 0 Q Base Q 0 Q Base Q Base Q 0 Q
51 19 49 50 syl2anc R CRing I PrmIdeal R Base Q 0 Q
52 n0 Base Q 0 Q x x Base Q 0 Q
53 51 52 sylib R CRing I PrmIdeal R x x Base Q 0 Q
54 16 15 ringelnzr Q Ring x Base Q 0 Q Q NzRing
55 54 ex Q Ring x Base Q 0 Q Q NzRing
56 55 exlimdv Q Ring x x Base Q 0 Q Q NzRing
57 14 53 56 sylc R CRing I PrmIdeal R Q NzRing
58 36 simp3d R CRing I PrmIdeal R x Base R y Base R x R y I x I y I
59 58 ad7antr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x Base R y Base R x R y I x I y I
60 simp-4r R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x Base R
61 simplr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I y Base R
62 simp-8l R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I R CRing
63 62 39 syl R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I R Grp
64 4 ad7antr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I I LIdeal R
65 62 64 26 syl2anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I I SubGrp R
66 1 a1i R CRing I LIdeal R Q = R / 𝑠 R ~ QG I
67 eqidd R CRing I LIdeal R Base R = Base R
68 27 28 eqger I SubGrp R R ~ QG I Er Base R
69 26 68 syl R CRing I LIdeal R R ~ QG I Er Base R
70 simpl R CRing I LIdeal R R CRing
71 27 28 12 34 2idlcpbl R Ring I 2Ideal R g R ~ QG I e h R ~ QG I f g R h R ~ QG I e R f
72 2 10 71 syl2an2r R CRing I LIdeal R g R ~ QG I e h R ~ QG I f g R h R ~ QG I e R f
73 2 ad2antrr R CRing I LIdeal R e Base R f Base R R Ring
74 simprl R CRing I LIdeal R e Base R f Base R e Base R
75 simprr R CRing I LIdeal R e Base R f Base R f Base R
76 27 34 ringcl R Ring e Base R f Base R e R f Base R
77 73 74 75 76 syl3anc R CRing I LIdeal R e Base R f Base R e R f Base R
78 eqid Q = Q
79 66 67 69 70 72 77 34 78 qusmulval R CRing I LIdeal R x Base R y Base R x R ~ QG I Q y R ~ QG I = x R y R ~ QG I
80 62 64 60 61 79 syl211anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x R ~ QG I Q y R ~ QG I = x R y R ~ QG I
81 simpr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a Q b = 0 Q
82 81 ad4antr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I a Q b = 0 Q
83 simpllr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I a = x R ~ QG I
84 simpr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I b = y R ~ QG I
85 83 84 oveq12d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I a Q b = x R ~ QG I Q y R ~ QG I
86 62 64 31 syl2anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I 0 Q = I
87 82 85 86 3eqtr3d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x R ~ QG I Q y R ~ QG I = I
88 80 87 eqtr3d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x R y R ~ QG I = I
89 28 eqg0el R Grp I SubGrp R x R y R ~ QG I = I x R y I
90 89 biimpa R Grp I SubGrp R x R y R ~ QG I = I x R y I
91 63 65 88 90 syl21anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x R y I
92 rsp2 x Base R y Base R x R y I x I y I x Base R y Base R x R y I x I y I
93 92 impl x Base R y Base R x R y I x I y I x Base R y Base R x R y I x I y I
94 93 imp x Base R y Base R x R y I x I y I x Base R y Base R x R y I x I y I
95 59 60 61 91 94 syl1111anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x I y I
96 86 eqeq2d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I a = 0 Q a = I
97 83 eqeq1d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I a = I x R ~ QG I = I
98 28 eqg0el R Grp I SubGrp R x R ~ QG I = I x I
99 63 65 98 syl2anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x R ~ QG I = I x I
100 96 97 99 3bitrrd R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x I a = 0 Q
101 86 eqeq2d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I b = 0 Q b = I
102 84 eqeq1d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I b = I y R ~ QG I = I
103 28 eqg0el R Grp I SubGrp R y R ~ QG I = I y I
104 63 65 103 syl2anc R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I y R ~ QG I = I y I
105 101 102 104 3bitrrd R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I y I b = 0 Q
106 100 105 orbi12d R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I x I y I a = 0 Q b = 0 Q
107 95 106 mpbid R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I a = 0 Q b = 0 Q
108 simplr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q b Base Q
109 1 a1i R CRing Q = R / 𝑠 R ~ QG I
110 eqidd R CRing Base R = Base R
111 ovexd R CRing R ~ QG I V
112 id R CRing R CRing
113 109 110 111 112 qusbas R CRing Base R / R ~ QG I = Base Q
114 113 ad4antr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q Base R / R ~ QG I = Base Q
115 108 114 eleqtrrd R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q b Base R / R ~ QG I
116 115 ad2antrr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I b Base R / R ~ QG I
117 elqsi b Base R / R ~ QG I y Base R b = y R ~ QG I
118 116 117 syl R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I y Base R b = y R ~ QG I
119 107 118 r19.29a R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I a = 0 Q b = 0 Q
120 simpllr R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a Base Q
121 120 114 eleqtrrd R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a Base R / R ~ QG I
122 elqsi a Base R / R ~ QG I x Base R a = x R ~ QG I
123 121 122 syl R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q x Base R a = x R ~ QG I
124 119 123 r19.29a R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a = 0 Q b = 0 Q
125 124 ex R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a = 0 Q b = 0 Q
126 125 anasss R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a = 0 Q b = 0 Q
127 126 ralrimivva R CRing I PrmIdeal R a Base Q b Base Q a Q b = 0 Q a = 0 Q b = 0 Q
128 15 78 16 isdomn Q Domn Q NzRing a Base Q b Base Q a Q b = 0 Q a = 0 Q b = 0 Q
129 57 127 128 sylanbrc R CRing I PrmIdeal R Q Domn
130 isidom Q IDomn Q CRing Q Domn
131 7 129 130 sylanbrc R CRing I PrmIdeal R Q IDomn