Step |
Hyp |
Ref |
Expression |
1 |
|
isprmidlc.1 |
|
2 |
|
isprmidlc.2 |
|
3 |
|
crngring |
|
4 |
|
prmidlidl |
|
5 |
3 4
|
sylan |
|
6 |
1 2
|
prmidlnr |
|
7 |
3 6
|
sylan |
|
8 |
3
|
ad4antr |
|
9 |
|
simp-4r |
|
10 |
|
simpllr |
|
11 |
10
|
snssd |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 1 13
|
rspcl |
|
15 |
8 11 14
|
syl2anc |
|
16 |
|
simplr |
|
17 |
16
|
snssd |
|
18 |
12 1 13
|
rspcl |
|
19 |
8 17 18
|
syl2anc |
|
20 |
15 19
|
jca |
|
21 |
|
simpllr |
|
22 |
|
simpr |
|
23 |
21 22
|
oveq12d |
|
24 |
|
simp-10l |
|
25 |
|
simp-4r |
|
26 |
10
|
ad2antrr |
|
27 |
26
|
ad4antr |
|
28 |
|
simplr |
|
29 |
16
|
ad4antr |
|
30 |
29
|
ad2antrr |
|
31 |
1 2
|
cringm4 |
|
32 |
24 25 27 28 30 31
|
syl122anc |
|
33 |
24 3
|
syl |
|
34 |
5
|
ad9antr |
|
35 |
1 2
|
ringcl |
|
36 |
33 25 28 35
|
syl3anc |
|
37 |
|
simp-7r |
|
38 |
13 1 2
|
lidlmcl |
|
39 |
33 34 36 37 38
|
syl22anc |
|
40 |
32 39
|
eqeltrd |
|
41 |
23 40
|
eqeltrd |
|
42 |
8
|
ad2antrr |
|
43 |
42
|
ad2antrr |
|
44 |
|
simpllr |
|
45 |
1 2 12
|
elrspsn |
|
46 |
45
|
biimpa |
|
47 |
43 29 44 46
|
syl21anc |
|
48 |
41 47
|
r19.29a |
|
49 |
|
simplr |
|
50 |
1 2 12
|
elrspsn |
|
51 |
50
|
biimpa |
|
52 |
42 26 49 51
|
syl21anc |
|
53 |
48 52
|
r19.29a |
|
54 |
53
|
anasss |
|
55 |
54
|
ralrimivva |
|
56 |
1 2
|
prmidl |
|
57 |
8 9 20 55 56
|
syl1111anc |
|
58 |
1 12
|
rspsnid |
|
59 |
3 58
|
sylan |
|
60 |
59
|
adantr |
|
61 |
|
ssel |
|
62 |
60 61
|
syl5com |
|
63 |
1 12
|
rspsnid |
|
64 |
3 63
|
sylan |
|
65 |
64
|
adantlr |
|
66 |
|
ssel |
|
67 |
65 66
|
syl5com |
|
68 |
62 67
|
orim12d |
|
69 |
68
|
adantllr |
|
70 |
69
|
adantr |
|
71 |
57 70
|
mpd |
|
72 |
71
|
ex |
|
73 |
72
|
anasss |
|
74 |
73
|
ralrimivva |
|
75 |
5 7 74
|
3jca |
|
76 |
|
3anass |
|
77 |
1 2
|
prmidl2 |
|
78 |
77
|
anasss |
|
79 |
76 78
|
sylan2b |
|
80 |
3 79
|
sylan |
|
81 |
75 80
|
impbida |
|