| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprmidlc.1 |
|
| 2 |
|
isprmidlc.2 |
|
| 3 |
|
crngring |
|
| 4 |
|
prmidlidl |
|
| 5 |
3 4
|
sylan |
|
| 6 |
1 2
|
prmidlnr |
|
| 7 |
3 6
|
sylan |
|
| 8 |
3
|
ad4antr |
|
| 9 |
|
simp-4r |
|
| 10 |
|
simpllr |
|
| 11 |
10
|
snssd |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 1 13
|
rspcl |
|
| 15 |
8 11 14
|
syl2anc |
|
| 16 |
|
simplr |
|
| 17 |
16
|
snssd |
|
| 18 |
12 1 13
|
rspcl |
|
| 19 |
8 17 18
|
syl2anc |
|
| 20 |
15 19
|
jca |
|
| 21 |
|
simpllr |
|
| 22 |
|
simpr |
|
| 23 |
21 22
|
oveq12d |
|
| 24 |
|
simp-10l |
|
| 25 |
|
simp-4r |
|
| 26 |
10
|
ad2antrr |
|
| 27 |
26
|
ad4antr |
|
| 28 |
|
simplr |
|
| 29 |
16
|
ad4antr |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
1 2
|
cringm4 |
|
| 32 |
24 25 27 28 30 31
|
syl122anc |
|
| 33 |
24 3
|
syl |
|
| 34 |
5
|
ad9antr |
|
| 35 |
1 2
|
ringcl |
|
| 36 |
33 25 28 35
|
syl3anc |
|
| 37 |
|
simp-7r |
|
| 38 |
13 1 2
|
lidlmcl |
|
| 39 |
33 34 36 37 38
|
syl22anc |
|
| 40 |
32 39
|
eqeltrd |
|
| 41 |
23 40
|
eqeltrd |
|
| 42 |
8
|
ad2antrr |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simpllr |
|
| 45 |
1 2 12
|
elrspsn |
|
| 46 |
45
|
biimpa |
|
| 47 |
43 29 44 46
|
syl21anc |
|
| 48 |
41 47
|
r19.29a |
|
| 49 |
|
simplr |
|
| 50 |
1 2 12
|
elrspsn |
|
| 51 |
50
|
biimpa |
|
| 52 |
42 26 49 51
|
syl21anc |
|
| 53 |
48 52
|
r19.29a |
|
| 54 |
53
|
anasss |
|
| 55 |
54
|
ralrimivva |
|
| 56 |
1 2
|
prmidl |
|
| 57 |
8 9 20 55 56
|
syl1111anc |
|
| 58 |
1 12
|
rspsnid |
|
| 59 |
3 58
|
sylan |
|
| 60 |
59
|
adantr |
|
| 61 |
|
ssel |
|
| 62 |
60 61
|
syl5com |
|
| 63 |
1 12
|
rspsnid |
|
| 64 |
3 63
|
sylan |
|
| 65 |
64
|
adantlr |
|
| 66 |
|
ssel |
|
| 67 |
65 66
|
syl5com |
|
| 68 |
62 67
|
orim12d |
|
| 69 |
68
|
adantllr |
|
| 70 |
69
|
adantr |
|
| 71 |
57 70
|
mpd |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
anasss |
|
| 74 |
73
|
ralrimivva |
|
| 75 |
5 7 74
|
3jca |
|
| 76 |
|
3anass |
|
| 77 |
1 2
|
prmidl2 |
|
| 78 |
77
|
anasss |
|
| 79 |
76 78
|
sylan2b |
|
| 80 |
3 79
|
sylan |
|
| 81 |
75 80
|
impbida |
|