Metamath Proof Explorer


Theorem cringm4

Description: Commutative/associative law for commutative ring. (Contributed by Thierry Arnoux, 14-Jan-2024)

Ref Expression
Hypotheses cringm4.1 B=BaseR
cringm4.2 ·˙=R
Assertion cringm4 RCRingXBYBZBWBX·˙Y·˙Z·˙W=X·˙Z·˙Y·˙W

Proof

Step Hyp Ref Expression
1 cringm4.1 B=BaseR
2 cringm4.2 ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 crngmgp RCRingmulGrpRCMnd
5 3 1 mgpbas B=BasemulGrpR
6 3 2 mgpplusg ·˙=+mulGrpR
7 5 6 cmn4 mulGrpRCMndXBYBZBWBX·˙Y·˙Z·˙W=X·˙Z·˙Y·˙W
8 4 7 syl3an1 RCRingXBYBZBWBX·˙Y·˙Z·˙W=X·˙Z·˙Y·˙W