Step |
Hyp |
Ref |
Expression |
1 |
|
cringm4.1 |
|- B = ( Base ` R ) |
2 |
|
cringm4.2 |
|- .x. = ( .r ` R ) |
3 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
4 |
3
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
5 |
3 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
6 |
3 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
7 |
5 6
|
cmn4 |
|- ( ( ( mulGrp ` R ) e. CMnd /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .x. Y ) .x. ( Z .x. W ) ) = ( ( X .x. Z ) .x. ( Y .x. W ) ) ) |
8 |
4 7
|
syl3an1 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .x. Y ) .x. ( Z .x. W ) ) = ( ( X .x. Z ) .x. ( Y .x. W ) ) ) |